Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 103(6): 1234-1243, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932735

RESUMO

Sudden death syndrome (SDS), caused by members of Fusarium solani species complex (FSSC) clade 2, is a major and economically important disease in soybean worldwide. The primary causal agent of SDS isolated to date in North America has been F. virguliforme. In 2014 and 2016, SDS symptoms were found in two soybean fields located on the same farm in Michigan. Seventy Fusarium strains were isolated from roots of the SDS-symptomatic soybeans in two fields. Phylogenetic analysis of partial sequences of elongation factor-1α, the nuclear ribosomal DNA intergenic spacer region, and the RNA polymerase II beta subunit revealed that the primary FSSC species isolated was F. brasiliense (58 and 36% in each field) and the remaining Fusarium strains were identified as F. cuneirostrum, F. phaseoli, an undescribed Fusarium sp. from FSSC clade 2, and strains in FSSC clade 5 and FSSC clade 11. Molecular identification was supported with morphological analysis and a pathogenicity assay. The soybean seedling pathogenicity assay indicated that F. brasiliense was capable of causing typical foliar SDS symptoms. Both root rot and foliar disease severity were variable by strain, just as they are in F. virguliforme. Both FSSC 5 and FSSC 11 strains were also capable of causing root rot, but SDS foliar symptoms were not detected. To our knowledge, this is the first report of F. brasiliense causing SDS in soybean in the United States and the first report of F. cuneirostrum, F. phaseoli, an as-yet-unnamed Fusarium sp., and strains in FSSC clade 5 and FSSC clade 11 associated with or causing root rot of soybean in Michigan.


Assuntos
Fusarium , Glycine max , Fusarium/classificação , Fusarium/fisiologia , Genes Fúngicos/genética , Michigan , Filogenia , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Especificidade da Espécie
2.
Phytopathology ; 109(7): 1280-1292, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30785376

RESUMO

Cercospora leaf spot, caused by Cercospora beticola, is a highly destructive disease of Beta vulgaris subsp. vulgaris worldwide. C. beticola populations are usually characterized by high genetic diversity, but little is known of the relationships among populations from different production regions around the world. This information would be informative of population origin and potential pathways for pathogen movement. For the current study, the genetic diversity, differentiation, and relationships among 948 C. beticola isolates in 28 populations across eight geographic regions were investigated using 12 microsatellite markers. Genotypic diversity, as measured by Simpson's complement index, ranged from 0.18 to 1.00, while pairwise index of differentiation values ranged from 0.02 to 0.42, with the greatest differentiation detected between two New York populations. In these populations, evidence for recent expansion was detected. Assessment of population structure identified two major clusters: the first associated with New York, and the second with Canada, Chile, Eurasia, Hawaii, Michigan, North Dakota, and one population from New York. Inferences of gene flow among these regions suggested that the source for one cluster likely is Eurasia, whereas the source for the other cluster is not known. These results suggest a shared origin of C. beticola populations across regions, except for part of New York, where population divergence has occurred. These findings support the hypothesis that dispersal of C. beticola occurs over long distances.


Assuntos
Beta vulgaris , Doenças das Plantas/microbiologia , Beta vulgaris/microbiologia , Canadá , Chile , Variação Genética , Havaí , Michigan , New York , North Dakota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA