Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Microbiol. ; 49(1): 45-53, jan.-mar. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18755

RESUMO

Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF) under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium), and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa). Under high salinity, the field consortium increased aerial dry weight (more than 1 g) and osmotic potential (0.54 MPa), as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.(AU)


Assuntos
Micorrizas , Desidratação , Cucurbita/crescimento & desenvolvimento , Deserto , Fenômenos Fisiológicos Vegetais , México
2.
Braz. j. microbiol ; 49(1): 45-53, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889199

RESUMO

ABSTRACT Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF) under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium), and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa). Under high salinity, the field consortium increased aerial dry weight (more than 1 g) and osmotic potential (0.54 MPa), as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.


Assuntos
Cucurbita/microbiologia , Micorrizas/fisiologia , Fungos/fisiologia , Solo/química , Água/análise , Água/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Biomassa , Cucurbita/crescimento & desenvolvimento , Cucurbita/fisiologia , Micorrizas/isolamento & purificação , Micorrizas/classificação , Clima Desértico , Salinidade , Secas , Fungos/isolamento & purificação , Fungos/classificação , México
3.
Braz J Microbiol ; 49(1): 45-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28887008

RESUMO

Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF) under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium), and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9MPa). Under high salinity, the field consortium increased aerial dry weight (more than 1g) and osmotic potential (0.54MPa), as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.


Assuntos
Cucurbita/microbiologia , Fungos/fisiologia , Micorrizas/fisiologia , Biomassa , Cucurbita/crescimento & desenvolvimento , Cucurbita/fisiologia , Clima Desértico , Secas , Fungos/classificação , Fungos/isolamento & purificação , México , Micorrizas/classificação , Micorrizas/isolamento & purificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Salinidade , Solo/química , Água/análise , Água/metabolismo
4.
Can J Microbiol ; 53(10): 1150-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18026207

RESUMO

Lentinula edodes is considered an alternative recycling agent for agricultural wastes, and there have been several studies to understand the relationship between its growth and ligninolytic activity. We tested the effect of wood from viticulture pruning, extracted with solvents of differing polarity, on the biomass production and activity pattern of ligninolytic enzymes. The analysis was done by measuring the mycelial dry mass and enzyme activity of liquid growth medium during the culture of L. edodes, adding either single extracts or a combination of extracts. Polar extracts enhanced mycelial production, and the activity patterns of lignin peroxidase, manganese peroxidase, aryl alcohol oxidase, and laccase were comparable to their activities predicted by ligninolysis models proposed for other fungi. We conclude that the polar extracts could be useful for enhancing fungal biomass production and for modifying lignin degradation because the regulation of ligninolytic enzyme activity is differentially influenced by the polarity of the extract.


Assuntos
Agricultura/métodos , Regulação Enzimológica da Expressão Gênica , Lignina/metabolismo , Extratos Vegetais/farmacologia , Cogumelos Shiitake/enzimologia , Vitis/química , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Lacase/metabolismo , Micélio/efeitos dos fármacos , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Peroxidases/metabolismo , Cogumelos Shiitake/efeitos dos fármacos , Cogumelos Shiitake/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA