Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 59(4): 777-785, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225595

RESUMO

Venomous animals can deploy toxins for both predation and defense. These dual functions of toxins might be expected to promote the evolution of new venoms and alteration of their composition. Cnidarians are the most ancient venomous animals but our present understanding of their venom diversity is compromised by poor taxon sampling. New proteomic data were therefore generated to characterize toxins in venoms of a staurozoan, a hydrozoan, and an anthozoan. We then used a novel clustering approach to compare venom diversity in cnidarians to other venomous animals. Comparison of the presence or absence of 32 toxin protein families indicated venom composition did not vary widely among the 11 cnidarian species studied. Unsupervised clustering of toxin peptide sequences suggested that toxin composition of cnidarian venoms is just as complex as that in many venomous bilaterians, including marine snakes. The adaptive significance of maintaining a complex and relatively invariant venom remains unclear. Future study of cnidarian venom diversity, venom variation with nematocyst types and in different body regions are required to better understand venom evolution.


Assuntos
Cnidários/química , Venenos de Cnidários/química , Proteoma , Animais , Proteômica , Análise de Sequência de Proteína
2.
Parasitology ; 146(7): 968-978, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30859925

RESUMO

Myxozoans are widespread and common endoparasites of fish with complex life cycles, infecting vertebrate and invertebrate hosts. There are two classes: Myxosporea and Malacosporea. To date about 2500 myxosporean species have been described. By comparison, there are only five described malacosporean species. Malacosporean development in the invertebrate hosts (freshwater bryozoans) has been relatively well studied but is poorly known in fish hosts. Our aim was to investigate the presence and development of malacosporeans infecting a diversity of fish from Brazil, Europe and the USA. We examined kidney from 256 fish belonging variously to the Salmonidae, Cyprinidae, Nemacheilidae, Esocidae, Percidae, Polyodontidae, Serrasalmidae, Cichlidae and Pimelodidae. Malacosporean infections were detected and identified by polymerase chain reaction and small subunit ribosomal DNA sequencing, and the presence of sporogonic stages was evaluated by ultrastructural examination. We found five malacosporean infections in populations of seven European fish species (brown trout, rainbow trout, white fish, dace, roach, gudgeon and stone loach). Ultrastructural analyses revealed sporogonic stages in kidney tubules of three fish species (brown trout, roach and stone loach), providing evidence that fish belonging to at least three families are true hosts. These results expand the range of fish hosts exploited by malacosporeans to complete their life cycle.


Assuntos
Doenças dos Peixes/parasitologia , Peixes/parasitologia , Especificidade de Hospedeiro , Myxozoa/crescimento & desenvolvimento , Animais , Brasil , DNA Ribossômico/genética , Europa (Continente) , Rim/parasitologia , Estágios do Ciclo de Vida , Myxozoa/classificação , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Estados Unidos
3.
PLoS One ; 6(4): e18871, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21541340

RESUMO

Infectious diseases are contributing to the decline of endangered amphibians. We identified myxosporean parasites, Myxidium spp. (Myxosporea: Myxozoa), in the brain and liver of declining native frogs, the Green and Golden Bell frog (Litoria aurea) and the Southern Bell frog (Litoria raniformis). We unequivocally identified two Myxidium spp. (both generalist) affecting Australian native frogs and the invasive Cane toad (Bufo marinus, syn. Rhinella marina) and demonstrated their association with disease. Our study tested the identity of Myxidium spp. within native frogs and the invasive Cane toad (brought to Australia in 1935, via Hawaii) to resolve the question whether the Cane toad introduced them to Australia. We showed that the Australian brain and liver Myxidium spp. differed 9%, 7%, 34% and 37% at the small subunit rDNA, large subunit rDNA, internal transcribed spacers 1 and 2, but were distinct from Myxidium cf. immersum from Cane toads in Brazil. Plotting minimum within-group distance against maximum intra-group distance confirmed their independent evolutionary trajectory. Transmission electron microscopy revealed that the brain stages localize inside axons. Myxospores were morphologically indistinguishable, therefore genetic characterisation was necessary to recognise these cryptic species. It is unlikely that the Cane toad brought the myxosporean parasites to Australia, because the parasites were not found in 261 Hawaiian Cane toads. Instead, these data support the enemy-release hypothesis predicting that not all parasites are translocated with their hosts and suggest that the Cane toad may have played an important spill-back role in their emergence and facilitated their dissemination. This work emphasizes the importance of accurate species identification of pathogens relevant to wildlife management and disease control. In our case it is paving the road for the spill-back role of the Cane toad and the parasite emergence.


Assuntos
Anuros/parasitologia , Espécies Introduzidas , Myxozoa/fisiologia , Parasitos/fisiologia , Doenças Parasitárias em Animais/parasitologia , Animais , Anuros/crescimento & desenvolvimento , Austrália , Axônios/parasitologia , Axônios/patologia , Encéfalo/parasitologia , Encéfalo/patologia , Encéfalo/ultraestrutura , Brasil , DNA Ribossômico/genética , Espécies em Perigo de Extinção , Genótipo , Geografia , Havaí , Larva/parasitologia , Larva/ultraestrutura , Estágios do Ciclo de Vida , Fígado/parasitologia , Fígado/patologia , Fígado/ultraestrutura , Dados de Sequência Molecular , Bainha de Mielina/parasitologia , Myxozoa/citologia , Myxozoa/genética , Parasitos/citologia , Parasitos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA