Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(14): e202400246, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656666

RESUMO

In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568 ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.

2.
J Org Chem ; 88(23): 16144-16154, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944159

RESUMO

Inversion barriers ΔG‡ for planar chiral phosphine-alkene and sulfonamide-alkene hybrid ligands based on phenyl-dibenz[b,f]azepine have been determined by density-functional theory calculations. Analysis of the structural and electronic characteristics of the minima and transition states explains the magnitudes of ΔG‡ and the geometrical changes during the inversion process. The steric repulsion caused by bulky substituents attached to the azepine nitrogen atom has a pronounced effect on the ΔG‡ value, explaining, inter alia, the stereochemical stability of the P- and S-alkene ligands when compared to the fluxional parent compound where X = H.

3.
ChemSusChem ; 14(21): 4741-4751, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34409745

RESUMO

With a view to developing multimetallic molecular catalysts that mimic the oxygen-evolving catalyst (OEC) in Nature's photosystem II, the synthesis of various dicubanoid manganese clusters is described and their catalytic activity investigated for water oxidation in basic, aqueous solution. Pyridinemethanol-based ligands are known to support polynuclear and cubanoid structures in manganese coordination chemistry. The chelators 2,6-pyridinedimethanol (H2 L1 ) and 6-methyl-2-pyridinemethanol (HL2 ) were chosen to yield polynuclear manganese complexes; namely, the tetranuclear defective dicubanes [MnII 2 MnIII 2 (HL1 )4 (OAc)4 (OMe)2 ] and [MnII 2 MnIII 2 (HL1 )6 (OAc)2 ] (OAc)2 ⋅2 H2 O, as well as the octanuclear-dicubanoid [MnII 6 MnIII 2 (L2 )4 (O)2 (OAc)10 (HOMe/OH2 )2 ]⋅3MeOH⋅MeCN. In freshly prepared solutions, polynuclear species were detected by electrospray ionization mass spectrometry, whereas X-band electron paramagnetic resonance studies in dilute, liquid solution suggested the presence of divalent mononuclear Mn species with g values of 2. However, the magnetochemical investigation of the complexes' solutions by the Evans technique confirmed a haphazard combination of manganese coordination complexes, from mononuclear to polynuclear species. Subsequently, the newly synthesized and characterized manganese molecular complexes were employed as precursors to prepare electrode-deposited films in a buffer-free solution to evaluate and compare their stability and catalytic activity for water oxidation electrocatalysis.

4.
Dalton Trans ; 41(12): 3553-61, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22310968

RESUMO

Reaction of nickel(II) chloride hexahydrate with N-n-butyldiethanolamine H(2)L (3) in the presence of LiH in anhydrous THF leads to the formation of the unique octanuclear chloro-bridged nickel(II) double cubane [({Ni(II)(4)(µ(3)-OH)Cl(3)(HL)(3)}µ(2)-Cl)(2)] (4) in 57% yield. According to single crystal X-ray structure analysis, complex 4·4CH(2)Cl(2) possesses a [({Ni(4)(µ(3)-OH)(µ(3)-O)(3)(OH)(3)(N)(3)(Cl)(3)}µ(2)-Cl)(2)] core and crystallizes in the monoclinic space group P2(1)/c with a = 18.292(2), b = 19.8972(5), c = 23.295(2) Å, ß = 98.408(6)°, V = 8387.3(8) Å(3), and four molecules in the unit cell. The analysis of the SQUID magnetic susceptibility data identified 4 as a weakly coupled dimer (J(1) = 14.5 K, J(2) = -0.6 K) with a ground state of S = 0, resulting from two S = 4 states of each {Ni(4)} subunits. Although complex 4 does not show an ac out-of-phase signal in a zero dc field at temperatures of 1.8 K and higher, low-temperature magnetization measurements revealed that complex 4 is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies. The eye-catching feature of complex 4 is the presence of two different blocking temperatures (0.9 K around zero field and 1.3 K at higher fields). The origin of this highly unusual behavior can be assigned to the dimer-nature of the interaction between the two S = 4 units. Furthermore STM and current imaging tunnelling spectroscopy (CITS) were performed on aggregates of 4 drop-coated on highly oriented pyrolytic graphite (HOPG) surfaces. CITS measurements show a strong contrast in the area of the nickel centers and a HOMO-LUMO gap of approximately 0.8 V.

5.
Chemistry ; 16(16): 4784-92, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20306503

RESUMO

Reaction of cobalt(II) chloride hexahydrate with N-substituted diethanolamines H(2)L(2-4) (3) in the presence of LiH in anhydrous THF leads under anaerobic conditions to the formation of three isostructural tetranuclear cobalt(II) complexes [Co(II) (4)(Cl)(4)(HL(2-4))(4)] (4) with a [Co(4)(mu(3)-O)(4)](4+) cubane core. According to X-ray structural analyses, the complexes 4 a,c crystallize in the tetragonal space group I4(1)/a, whereas for complex 4 b the tetragonal space group P$\bar 4$ was found. In the solid state the orientation of the cubane cores and the formation of a 3D framework were controlled by the ligand substituents of the cobalt(II) cubanes 4. This also allowed detailed magnetic investigations on single crystals. The analysis of the SQUID magnetic susceptibility data for 4 a gave intramolecular ferromagnetic couplings of the cobalt(II) ions (J(1) approximately 20.4 K, J(2) approximately 7.6 K), resulting in an S=6 ground-state multiplet. The anisotropy was found to be of the easy-axis type (D=-1.55 K) with a resulting anisotropy barrier of Delta approximately 55.8 K. Two-dimensional electron-gas (2DEG) Hall magnetization measurements revealed that complex 4 a is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies below a blocking temperature of about 4.4 K. The hysteresis loops collapse at zero field owing to fast quantum tunneling of the magnetization (QTM). The structural and electronic properties of cobalt(II) cubane 4 a, deposited on a highly oriented pyrolytic graphite (HOPG) surface, were investigated by means of STM and current imaging tunneling spectroscopy (CITS) at RT and standard atmospheric pressure. In CITS measurements the rather large contrast found at the expected locations of the metal centers of the molecules indicated the presence of a strongly localized LUMO.


Assuntos
Cobalto/química , Dietilaminas/química , Dietilaminas/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Magnetismo , Microscopia de Tunelamento , Estrutura Molecular , Temperatura
6.
Chemistry ; 14(5): 1472-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18186091

RESUMO

Enantiomerically pure, vicinal diols 1 afforded in a two-step synthesis (etherification and subsequent Claisen condensation) chiral bis-1,3-diketones H(2)L((S,S)) (3 a-c) with different substitution patterns. Reaction of these C(2)-symmetric ligands with various transition-metal acetates in the presence of alkali ions generated distinct polynuclear aggregates 4-8 by diastereoselective self-assembly. Starting from copper(II) acetate monohydrate and depending on the ratio of transition-metal ion to alkali ion to ligand, chiral tetranuclear copper(II) cubanes (C,C,C,C)-[Cu(4)(L((S,S)))(2)(OMe)(4)] (4 a-c) or dinuclear copper(II) helicates (P)-[Cu(2)(L((S,S)))(2)] (5) could be synthesized with square-pyramidal and square-planar coordination geometry at the metal center. In analogy to the last case, with palladium(II) acetate double-stranded helical systems (P)-[Pd(2)(L((S,S)))(2)] (6,7) were accessible exhibiting a linear self-organization of ligand-isolated palladium filaments in the solid state with short inter- and intramolecular metal distances. Finally, the introduction of hexacoordinate nickel(II) in combination with lithium hydroxide monohydrate and chiral ligand H(2)L((S,S)) (3 a) allowed the isolation of enantiomerically pure dinuclear nickel(II) coronate [(LiMeOH)(2) subset{(Delta,Lambda)-Ni(2)(L((S,S)))(2)(OMe)(2)}] (8) with two lithium ions in the voids, defined by the oxygen donors in the ligand backbone. The high diastereoselectivity, induced by the chiral ligands, during the self-assembly process in the systems 4-8 could be exemplarily proven by circular dichroism spectroscopy for the synthesized enantiomers of the chiral copper(II) cubane 4 a and palladium(II) helicate 6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA