Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Inflammopharmacology ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133352

RESUMO

Wounds or chronic injuries are associated with high medical costs so, develop healing-oriented drugs is a challenge for modern medicine. The identification of new therapeutic alternatives focuses on the use of natural products. Therefore, the main goal of this study was to evaluate the healing potential and anti-inflammatory mechanism of action of extracts and the main compounds derived from Myrciaria plinioides D. Legrand leaves. The antimicrobial activity of leaf extracts was analyzed. Cell viability, cytotoxicity and genotoxicity of plant extracts and compounds were also assessed. Release of pro- and anti-inflammatory cytokines and TGF-ß by ELISA, and protein expression was determined by Western Blot. The cell migration and cell proliferation of ethanol and aqueous leaf extracts and p-coumaric acid, quercetin and caffeic acid compounds were also evaluated. The aqueous extract exhibited antibacterial activity and, after determining the safety concentrations in three assays, we showed that this extract induced p38-α MAPK phosphorylation and the same extract and the p-coumaric acid decreased COX-2 and caspase-3, -8 expression, as well as reduced the TNF-α release and stimulated the IL-10 in RAW 264.7 cells. In L929 cells, the extract and p-coumaric acid induced TGF-ß release, besides increasing the process of cell migration and proliferation. These results suggested that the healing properties of Myrciaria plinioides aqueous extract can be associated to the presence of phenolic compounds, especially p-coumaric acid, and/or glycosylated metabolites.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37770144

RESUMO

Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.


Assuntos
Antineoplásicos , Fabaceae , Cricetinae , Animais , Humanos , Mutagênicos/toxicidade , Dano ao DNA , Cricetulus , Ensaio Cometa , Linhagem Celular Tumoral , Extratos Vegetais/toxicidade , DNA
3.
Environ Geochem Health ; 45(10): 7081-7097, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542205

RESUMO

Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC-MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.


Assuntos
Dano ao DNA , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Humanos , Feminino , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poeira/análise , Antracenos/análise , Carvão Mineral/toxicidade , Carvão Mineral/análise , Estresse Oxidativo
4.
Mol Biol Rep ; 50(8): 7105-7111, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326748

RESUMO

BACKGROUND: A novel virulent bacteriophage infecting phytobacteria Pseudomonas cichorii (P. cichorii) was isolated from leafy vegetables in Brazil. P. cichorii is a Gram-negative soil phytobacterium, the causal agent of a number of economically important plant diseases worldwide. METHODS AND RESULTS: In this study, a new phage specific for P. cichorii was isolated from solid samples (lettuce, chicory and cabbage), designated vB_Pci_PCMW57. Electron microscopy revealed a small virion (~ 50-nm-diameter icosahedral capsid) with a short, non-contractile tail. The genome of vB_Pci_PCMW57 is 40,117 bp in size, with a GC content of 57.6% and encodes 49 open reading frames. The phage is genetically similar to P. syringae phages Pst_GM1 and Pst_GIL1, and the P. fluorescens phages WRT and KNP. According to electron microscopy and whole-genome sequence analysis, vB_Pci_PCMW57 should be classified as a Caudoviticetes, family Autographiviridae, subfamily Studiervirinae. CONCLUSIONS: The complete phage genome was annotated, and the sequence identity of the virus with other Pseudomonas viruses was higher than 95%. To our knowledge, this is the first report of a bacteriophage infecting Pseudomonas cichorii.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Genoma Viral , Análise de Sequência de DNA , Pseudomonas/genética , Fases de Leitura Aberta/genética , Filogenia
5.
Oncotarget ; 14: 637-649, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37343056

RESUMO

Diphenyl ditelluride (DPDT) is an organotellurium (OT) compound with pharmacological properties, including antioxidant, antigenotoxic and antimutagenic activities when applied at low concentrations. However, DPDT as well as other OT compounds also show cytotoxicity against mammalian cells when treatments occur at higher drug concentrations. Considering that the underlying mechanisms of toxicity of DPDT against tumor cells have been poorly explored, the objective of our study was to investigate the effects of DPDT against both human cancer and non-tumorigenic cells. As a model, we used the colonic HCT116 cancer cells and the MRC5 fibroblasts. Our results showed that DPDT preferentially targets HCT116 cancer cells when compared to MRC5 cells with IC50 values of 2.4 and 10.1 µM, respectively. This effect was accompanied by the induction of apoptosis and a pronounced G2/M cell cycle arrest in HCT116 cells. Furthermore, DPDT induces DNA strand breaks at concentrations below 5 µM in HCT116 cells and promotes the occurrence of DNA double strand breaks mostly during S-phase as measured by γ-H2AX/EdU double staining. Finally, DPDT forms covalent complexes with DNA topoisomerase I, as observed by the TARDIS assay, with a more prominent effect observed in HCT116 than in MRC5 cells. Taken together, our results show that DPDT preferentially targets HCT116 colon cancer cells likely through DNA topoisomerase I poisoning. This makes DPDT an interesting molecule for further development as an anti-proliferative compound in the context of cancer.


Assuntos
Neoplasias do Colo , DNA Topoisomerases Tipo I , Animais , Humanos , Células HCT116 , DNA Topoisomerases Tipo I/metabolismo , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , DNA , Mamíferos/metabolismo
6.
Environ Sci Pollut Res Int ; 30(18): 54095-54105, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36869947

RESUMO

During coal mining activities, many compounds are released into the environment that can negatively impact human health. Particulate matter, polycyclic aromatic hydrocarbons (PAHs), metals, and oxides are part of the complex mixture that can affect nearby populations. Therefore, we designed this study to evaluate the potential cytotoxic and genotoxic effects in individuals chronically exposed to coal residues from peripheral blood lymphocytes and buccal cells. We recruited 150 individuals who lived more than 20 years in La Loma-Colombia and 120 control individuals from the city of Barranquilla without a history of exposure to coal mining. In the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, significant differences in the frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD), and apoptotic cells (APOP) were observed between the two groups. In the buccal micronucleus cytome (BM-Cyt) assay, a significant formation of NBUD, karyorrhexis (KRX), karyolysis (KRL), condensed chromatin (CC), and binucleated (BN) cells was observed in the exposed group. Considering the characteristics of the study group, a significant correlation for CBMN-Cyt was found between NBUD and vitamin consumption, between MN or APOP and meat consumption, and between MN and age. Moreover, a significant correlation for BM-Cyt was found between KRL and vitamin consumption or age, and BN versus alcohol consumption. Using Raman spectroscopy, a significant increase in the concentration of DNA/RNA bases, creatinine, polysaccharides, and fatty acids was detected in the urine of individuals exposed to coal mining compared to the control group. These results contribute to the discussion on the effects of coal mining on nearby populations and the development of diseases due to chronic exposure to these residues.


Assuntos
Antineoplásicos , Minas de Carvão , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Mucosa Bucal , Testes para Micronúcleos/métodos , Dano ao DNA , Linfócitos , Antineoplásicos/farmacologia
7.
Environ Toxicol Pharmacol ; 97: 104025, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36460284

RESUMO

Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.


Assuntos
Ferreiros , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Testes para Micronúcleos , Polimorfismo Genético , Dano ao DNA , Biomarcadores , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
8.
Mastology (Online) ; 332023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1433826

RESUMO

:Breast cancer is the object of thousands of studies worldwide. Nevertheless, few tools are available to corroborate prediction of response to neoadjuvant chemotherapy. Artificial intelligence is being researched for its potential utility in several fields of knowledge, including oncology. The development of a standardized Artificial intelligence-based predictive model for patients with breast cancer may help make clinical management more personalized and effective. We aimed to apply Artificial intelligence models to predict the response to neoadjuvant chemotherapy based solely on clinical and pathological data. Methods: Medical records of 130 patients treated with neoadjuvant chemotherapy were reviewed and divided into two groups: 90 samples to train the network and 40 samples to perform prospective testingand validate the results obtained by the Artificial intelligence method. Results: Using clinicopathologic data alone, the artificial neural network was able to correctly predict pathologic complete response in 83.3% of the cases. It also correctly predicted 95.6% of locoregional recurrence, as well as correctly determined whether patients were alive or dead at a given time point in 90% of the time. To date, no published research has used clinicopathologic data to predict the response to neoadjuvant chemotherapy in patients with breast cancer, thus highlighting the importance of the present study. Conclusions: Artificial neural network may become an interesting tool for predicting response to neoadjuvant chemotherapy, locoregional recurrence, systemic disease progression, and survival in patients with breast cancer (AU)


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Inteligência Artificial , Terapia Neoadjuvante , Antineoplásicos/uso terapêutico , Progesterona/metabolismo , Estudos Retrospectivos , Redes Neurais de Computação , Receptor ErbB-2/metabolismo , Antígeno Ki-67/metabolismo , Estrogênios/metabolismo , Recidiva Local de Neoplasia
9.
Artigo em Inglês | MEDLINE | ID: mdl-34454693

RESUMO

The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.


Assuntos
Cobre/farmacologia , Reparo do DNA/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Fenantrolinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Ácido Valproico/farmacologia , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Ligantes , Mutação/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos
10.
Environ Sci Pollut Res Int ; 28(48): 69416-69425, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34302239

RESUMO

Nanoparticles such as zinc oxide nanoparticles (ZnO-NP) that are incorporated in consumer and industrial products have caused concern about their potential ecotoxicological impact when released into the environment. Bivalve mollusks are susceptible targets for nanoparticle toxicity since nanomaterials can enter the cells by endocytosis mechanisms. The aim of this study was to evaluate the influence of ZnO-NP on the redox metabolism in Limnoperna fortunei and the DNA damage after exposure to ZnO-NP. Adult bivalves were incubated with 1-, 10-, and 50-µg mL-1 ZnO-NP for 2, 4, and 24 h. Ionic Zn release, enzymatic and non-enzymatic antioxidant activity, oxidative damage, and DNA damage were evaluated. Oxidative damage to proteins and lipids were observed after 4-h exposure and returned to baseline levels after 24 h. Superoxide dismutase levels decreased after 4-h exposure and increased after 24 h. No significant alteration was observed in the catalase activity or even DNA double-strand cleavage. The dissociation of ZnO may occur after 24 h, releasing ionic zinc (Zn2+) by hydrolysis, which was confirmed by the increase in the ionic Zn concentration following 24-h exposure. In conclusion, ZnO-NP were able to induce oxidative stress in exposed golden mussels. The golden mussel can modulate its own antioxidant defenses in response to oxidative stress and seems to be able to hydrolyze the nanoparticles and consequently, release Zn2+ into the cellular compartment.


Assuntos
Nanopartículas Metálicas , Mytilidae , Nanopartículas , Óxido de Zinco , Animais , Oxirredução , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA