Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612521

RESUMO

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Assuntos
Di-Hidroergotamina , Escopolamina , Animais , Ratos , Histamina , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Encéfalo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas dos Receptores H2 da Histamina
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255943

RESUMO

Poly-ADP-Ribose Polymerase (PARP-1) is an overexpressed enzyme in several carcinomas; consequently, the design of PARP-1 inhibitors has acquired special attention. Hence, in the present study, three compounds (8-10) were produced through a Michael addition protocol, using phenylmethanethiol, 5-fluoro-2-mercaptobenzyl alcohol, and 4-mercaptophenylacetic acid, respectively, as nucleophiles and perezone as the substrate, expecting them to be convenient candidates that inhibit PARP-1. It is convenient to note that in the first stage of the whole study, the molecular dynamics (MD) simulations and the quantum chemistry studies of four secondary metabolites, i.e., perezone (1), perezone angelate (2), hydroxyperezone (3), and hydroxyperezone monoangelate (4), were performed, to investigate their interactions in the active site of PARP-1. Complementarily, a docking study of a set of eleven sulfur derivatives of perezone (5-15) was projected to explore novel compounds, with remarkable affinity to PARP-1. The molecules 8-10 provided the most adequate results; therefore, they were evaluated in vitro to determine their activity towards PARP-1, with 9 having the best IC50 (0.317 µM) value. Additionally, theoretical calculations were carried out using the density functional theory (DFT) with the hybrid method B3LYP with a set of base functions 6-311++G(d,p), and the reactivity properties were compared between the natural derivatives of perezone and the three synthesized compounds, and the obtained results exhibited that 9 has the best properties to bind with PARP-1. Finally, it is important to mention that 9 displays significant inhibitory activity against MDA-MB-231 and MCF-7 cells, i.e., 145.01 and 83.17 µM, respectively.


Assuntos
Cicloexenos , Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Sesquiterpenos , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células MCF-7 , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
3.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895094

RESUMO

To aid the possible prevention of multidrug resistance in tumors and cause lower toxicity, a set of sixteen novel dihydropyridine carboxylic acids derivatives 3a-p were produced; thus, the activation of various ynones with triflic anhydride was performed, involving a nucleophilic addition of several bis(trimethylsilyl) ketene acetals, achieving good yields requiring easy workup. The target molecules were unequivocally characterized by common spectroscopic methods. In addition, two of the tested compounds (3a, and 3b) were selected to perform in silico studies due to the highest cytotoxic activity towards the HCT-15 cell line (7.94 ± 1.6 µM and 9.24 ± 0.9 µM, respectively). Employing theoretical calculations with density functional theory (DFT) using the B3LYP/6-311++G(d,p) showed that the molecular parameters correlate adequately with the experimental results. In contrast, predictions employing Osiris Property Explorer showed that compounds 3a and 3b present physicochemical characteristics that would likely make it an orally active drug. Moreover, the performance of Docking studies with proteins related to the apoptosis pathway allowed a proposal of which compounds could interact with PARP-1 protein. Pondering the obtained results (synthesis, in silico, and cytotoxic activity) of the target compounds, they can be judged as suitable antineoplastic agent candidates.


Assuntos
Antineoplásicos , Di-Hidropiridinas , Neoplasias , Humanos , Linhagem Celular , Antineoplásicos/química , Compostos Orgânicos , Ácidos Carboxílicos/farmacologia , Di-Hidropiridinas/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Estrutura Molecular
4.
Toxins (Basel) ; 15(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36828449

RESUMO

Aflatoxin B1 (AFB1) exhibits the most potent mutagenic and carcinogenic activity among aflatoxins. For this reason, AFB1 is recognized as a human group 1 carcinogen by the International Agency of Research on Cancer. Consequently, it is essential to determine its properties and behavior in different chemical systems. The chemical properties of AFB1 can be explored using computational chemistry, which has been employed complementarily to experimental investigations. The present review includes in silico studies (semiempirical, Hartree-Fock, DFT, molecular docking, and molecular dynamics) conducted from the first computational study in 1974 to the present (2022). This work was performed, considering the following groups: (a) molecular properties of AFB1 (structural, energy, solvent effects, ground and the excited state, atomic charges, among others); (b) theoretical investigations of AFB1 (degradation, quantification, reactivity, among others); (c) molecular interactions with inorganic compounds (Ag+, Zn2+, and Mg2+); (d) molecular interactions with environmentally compounds (clays); and (e) molecular interactions with biological compounds (DNA, enzymes, cyclodextrins, glucans, among others). Accordingly, in this work, we provide to the stakeholder the knowledge of toxicity of types of AFB1-derivatives, the structure-activity relationships manifested by the bonds between AFB1 and DNA or proteins, and the types of strategies that have been employed to quantify, detect, and eliminate the AFB1 molecule.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Aflatoxina B1/toxicidade , Simulação de Acoplamento Molecular , Aflatoxinas/metabolismo , Relação Estrutura-Atividade , Carcinógenos , DNA/metabolismo
5.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677633

RESUMO

Lower activity of the histaminergic system is associated with neurological disorders, including Alzheimer's disease (AD). Thus, the enhancement of histaminergic neurotransmission by inhibition of histamine N-methyl transferase (HNMT), which degrades histamine, appears as an important approach. For this purpose, rigid and flexible molecular docking studies of 185 FDA-approved drugs with the HNMT enzyme were carried out to select two compounds to perform molecular dynamics (MD) simulations to evaluate the binding free energies and stability of the enzyme-drug complexes. Finally, an HNMT inhibition assay was performed to corroborate their effect towards HNMT. Molecular docking studies with HNMT allowed the selection of dihydroergotamine and vilazodone since these molecules showed the lowest Gibbs free energy values. Analysis of the binding mode of vilazodone showed interactions with the binding pocket of HNMT with Glu28, Gln143, and Asn283. In contrast, dihydroergotamine binds to the HNMT active site in a different location, apparently because it is overall the more rigid ligand compared to flexible vilazodone. HNMT inhibitory activity for dihydroergotamine and vilazodone was corroborated (IC50 = 72.89 µM and 45.01 µM, respectively) by in vitro assays. Drug repurposing of HNMT was achieved by employing computational studies.


Assuntos
Histamina , Transferases , Histamina/metabolismo , Histamina N-Metiltransferase/metabolismo , Cloridrato de Vilazodona , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Di-Hidroergotamina
6.
Pharmacol Rep ; 74(5): 832-846, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36042131

RESUMO

Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive and functional impairments. The investigation of AD has focused on the formation of senile plaques, composed mainly by amyloid ß (Aß) peptide, and neurofibrillary tangles (NFTs) in the brain. Senile plaques and NFTs cause the excessive recruitment and activation of microglia, thus generating neuroinflammation and neuronal damage. Among the risk factors for the development of AD, diabetes has increasingly attracted attention. Hyperglycemia, the fundamental characteristic of diabetes, is involved in several mechanisms that give rise to microglial overactivation, resulting in neuronal damage and cognitive impairment. Indeed, various studies have identified the correlation between diabetes and AD. The aim of this review is to describe various mechanisms of the hyperglycemia-induced overactivation of microglia, which leads to neuroinflammation and neuronal damage and consequently contributes to the pathology of AD. The disruption of the regulation of microglial activity by hyperglycemia occurs through many mechanisms, including a greater production of reactive oxygen species (ROS) and glycation end products (AGEs), and a decrease in the elimination of Aß. The future direction of research on the relation between hyperglycemia and AD is addressed, such as the importance of determining whether the hyperglycemia-induced harmful effects on microglial activity can be reversed or attenuated if blood glucose returns to a normal level.


Assuntos
Doença de Alzheimer , Hiperglicemia , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Peptídeos beta-Amiloides , Placa Amiloide/complicações , Placa Amiloide/patologia , Espécies Reativas de Oxigênio , Glicemia , Hiperglicemia/complicações
7.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682746

RESUMO

The coordination of one and two aflatoxin B1 (AFB1, a potent carcinogen) molecules with chlorophyll a (chl a) was studied at a theoretical level. Calculations were performed using the M06-2X method in conjunction with the 6-311G(d,p) basis set, in both gas and water phases. The molecular electrostatic potential map shows the chemical activity of various sites of the AFB1 and chl a molecules. The energy difference between molecular orbitals of AFB1 and chl a allowed for the establishment of an intermolecular interaction. A charge transfer from AFB1 to the central cation of chl a was shown. The energies of the optimized structures for chl a show two configurations, unfolded and folded, with a difference of 15.41 kcal/mol. Chl a appeared axially coordinated to the plane (α-down or ß-up) of the porphyrin moiety, either with the oxygen atom of the ketonic group, or with the oxygen atom of the lactone moiety of AFB1. The complexes of maximum stability were chl a 1-α-E-AFB1 and chl a 2-ß-E-AFB1, at -36.4 and -39.2 kcal/mol, respectively. Additionally, with two AFB1 molecules were chl a 1-D-2AFB1 and chl a 2-E-2AFB1, at -60.0 and -64.8 kcal/mol, respectively. Finally, biosorbents containing chlorophyll could improve AFB1 adsorption.


Assuntos
Aflatoxina B1 , Clorofila , Aflatoxina B1/química , Carcinógenos , Clorofila A , Oxigênio
8.
Molecules ; 27(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35268667

RESUMO

Glioblastoma multiforme (GBM) represents the most malignant type of astrocytoma, with a life expectancy of two years. It has been shown that Poly (ADP-ribose) polymerase 1 (PARP-1) protein is over-expressed in GBM cells, while its expression in healthy tissue is low. In addition, perezone, a phyto-compound, is a PARP-1 inhibitor with anti-neoplastic activity. As a consequence, in the present study, both in vitro and computational evaluations of perezone and its chemically related compound, perezone angelate, as anti-GBM agents were performed. Hence, the anti-proliferative assay showed that perezone angelate induces higher cytotoxicity in the GBM cell line (U373 IC50 = 6.44 µM) than perezone (U373 IC50 = 51.20 µM) by induction of apoptosis. In addition, perezone angelate showed low cytotoxic activity in rat glial cells (IC50 = 173.66 µM). PARP-1 inhibitory activity (IC50 = 5.25 µM) and oxidative stress induction by perezone angelate were corroborated employing in vitro studies. In the other hand, the performed docking studies allowed explaining the PARP-1 inhibitory activity of perezone angelate, and ADMET studies showed its probability to permeate cell membranes and the blood-brain barrier, which is an essential characteristic of drugs to treat neurological diseases. Finally, it is essential to highlight that the results confirm perezone angelate as a potential anti-GBM agent.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Sesquiterpenos , Animais , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ratos , Sesquiterpenos/farmacologia
9.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680041

RESUMO

Alzheimer's disease (AD) represents the principal cause of dementia among the elderly. Great efforts have been established to understand the physiopathology of AD. Changes in neurotransmitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic, and histaminergic changes have been reported. Interestingly, changes in the histaminergic system have been related to cognitive impairment in AD patients. The principal pathological changes in the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the degradation of amyloid beta (Aß) peptides. In this sense, the evaluation of the impact of HNMT inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Histamina N-Metiltransferase/genética , Histamina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Histamínicos/uso terapêutico , Histamina N-Metiltransferase/antagonistas & inibidores , Humanos
10.
Prog Chem Org Nat Prod ; 116: 67-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34698946

RESUMO

This chapter covers a sesquiterpene quinone, commonly named perezone. This molecule is documented as the first secondary metabolite isolated in crystalline form in the New World in 1852. An introduction, with its structure, the IUPAC nomenclature, and the most recent physical and spectroscopic characterizations are firstly described initially. Alongside this, a timeline and scheme with summarized information of the history of this molecule is given including the "Códice Badiano de la Cruz, 1552, highlighting the year of its isolation culminating with information up to 2005. Subsequently, in a chronological order the most recent advances of the target molecule are included and organized in subsections covering the last 15-year period 2006-2020. Finally, recently submitted contributions from the laboratory of the authors are described. It is important to note that the details provided highlight the importance and relevance of perezone.


Assuntos
Sesquiterpenos , Quinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA