Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Sci Data ; 11(1): 84, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238306

RESUMO

Based on more than 11 billion geolocated cell phone records from 33 million different devices, daily mobility networks were constructed over a 15-month period for Greater Mexico City, one of the largest and most diverse metropolitan areas globally. The time frame considered spans the entire year of 2020 and the first three months of 2021, enabling the analysis of population movement dynamics before, during, and after the COVID-19 health contingency. The nodes within the 456 networks represent the basic statistical geographic areas (AGEBs) established by the National Institute of Statistics, Geography, and Informatics (INEGI) in Mexico. This framework facilitates the integration of mobility data with numerous indicators provided by INEGI. Edges connecting these nodes represent movement between AGEBs, with edge weights indicating the volume of trips from one AGEB to another. This extensive dataset allows researchers to uncover travel patterns, cross-reference data with socio-economic indicators, and conduct segregation studies, among other potential analyses.

4.
Plant Dis ; 108(5): 1374-1381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105456

RESUMO

The Goss's wilt and leaf blight is a disease of maize (Zea mays) caused by Clavibacter nebraskensis, which was widespread in the last several years throughout the Midwest in the United States, south in Texas, and north to Canada. The bacterium is included within the high-risk list of quarantine pathogens by many plant protection organizations and countries including Mexico. Severe blight symptoms on maize plants were found in different provinces from Coahuila and Tlaxcala, Mexico, in 2012 and 2021, respectively. Twenty bacterial isolates with morphology similar to C. nebraskensis were obtained from the diseased maize leaves. The isolates were confirmed by phenotypic tests and 16S rRNA and gyrB sequencing. Two strains were tested for pathogenicity tests on seven hybrid sweet corn cultivars available in Mexico, and the most sensitive cultivar was tested for all the strains to fulfill Koch's postulates. The phylogenetic reconstruction based on two single loci reveals a remarkable clustering of Mexican strains to American strains reported approximately 50 years ago. The presence of this pathogen represents a risk and a significant challenge for plant protection strategies in Mexico and maize diversity.


Assuntos
Clavibacter , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Zea mays , Zea mays/microbiologia , México , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Clavibacter/genética , Folhas de Planta/microbiologia
5.
Elife ; 122023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498057

RESUMO

Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated during the first year of local transmission. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in Mexico. Lineages B.1.1.222 and B.1.1.519 exhibited similar dynamics, constituting clades that likely originated in Mexico and persisted for >12 months. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. For the largest B.1.617.2 clades, we further explored viral lineage movements across Mexico. Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.


Assuntos
COVID-19 , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Evolução Biológica , Filogenia
6.
Sci Rep ; 13(1): 8566, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237051

RESUMO

Human mobility networks are widely used for diverse studies in geography, sociology, and economics. In these networks, nodes usually represent places or regions and links refer to movement between them. They become essential when studying the spread of a virus, the planning of transit, or society's local and global structures. Therefore, the construction and analysis of human mobility networks are crucial for a vast number of real-life applications. This work presents a collection of networks that describe the human travel patterns between municipalities in Mexico in the 2020-2021 period. Using anonymized mobile location data, we constructed directed, weighted networks representing the volume of travels between municipalities. We analysed changes in global, local, and mesoscale network features. We observe that changes in these features are associated with factors such as COVID-19 restrictions and population size. In general, the implementation of restrictions at the start of the COVID-19 pandemic in early 2020, induced more intense changes in network features than later events, which had a less notable impact in network features. These networks will result very useful for researchers and decision-makers in the areas of transportation, infrastructure planning, epidemic control and network science at large.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , México/epidemiologia , Viagem , Meios de Transporte
7.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359881

RESUMO

Viroids are single-stranded, circular RNA molecules (234-406 nt) that infect a wide range of crop species and cause economic losses in agriculture worldwide. They are characterized by the existence of a population of sequence variants, attributed to the low fidelity of RNA polymerases involved in their transcription, resulting in high mutation rates. Therefore, these biological entities exist as quasispecies. This feature allows them to replicate within a wide range of host plants, both monocots and dicots. Viroid hosts include economically important crops such as tomato, citrus, and fruit trees such as peach and avocado. Given the high risk of introducing viroids to viroid disease-free countries, these pathogens have been quarantined globally. As discussed herein, Mexico represents a geographical landscape of viroids linked to their origin and comprises considerable biodiversity. The biological features of viroid species endemic to Mexico are highlighted in this communication. In addition, we report the phylogenetic relationships among viroid and viroid strains, their economic impact, geographical distribution, and epidemiological features, including a broad host range and possible long-distance, seed, or insect-mediated transmission. In summary, this review could be helpful for a better understanding of the biology of viroid diseases and future programs on control of movement and spread to avoid economic losses in agricultural industries.


Assuntos
Citrus , Solanum lycopersicum , Viroides , Viroides/genética , Filogenia , México/epidemiologia
8.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682662

RESUMO

Viroids are the smallest pathogens of angiosperms, consisting of non-coding RNAs that cause severe diseases in agronomic crops. Symptoms associated with viroid infection are linked to developmental alterations due to genetic regulation. To understand the global mechanisms of host viroid response, we implemented network approaches to identify master transcription regulators and their differentially expressed targets in tomato infected with mild and severe variants of PSTVd. Our approach integrates root and leaf transcriptomic data, gene regulatory network analysis, and identification of affected biological processes. Our results reveal that specific bHLH, MYB, and ERF transcription factors regulate genes involved in molecular mechanisms underlying critical signaling pathways. Functional enrichment of regulons shows that bHLH-MTRs are linked to metabolism and plant defense, while MYB-MTRs are involved in signaling and hormone-related processes. Strikingly, a member of the bHLH-TF family has a specific potential role as a microprotein involved in the post-translational regulation of hormone signaling events. We found that ERF-MTRs are characteristic of severe symptoms, while ZNF-TF, tf3a-TF, BZIP-TFs, and NAC-TF act as unique MTRs. Altogether, our results lay a foundation for further research on the PSTVd and host genome interaction, providing evidence for identifying potential key genes that influence symptom development in tomato plants.


Assuntos
Solanum lycopersicum , Viroides , Hormônios , Solanum lycopersicum/metabolismo , Doenças das Plantas/genética , RNA Viral/genética , Fatores de Transcrição/genética , Viroides/genética
9.
Front Genet ; 12: 654256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306008

RESUMO

The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the ß-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.

10.
Interface Focus ; 11(4): 20200072, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34123356

RESUMO

Glioblastoma (GBM) is the most aggressive and common brain cancer in adults with the lowest life expectancy. The current neuro-oncology practice has incorporated genes involved in key molecular events that drive GBM tumorigenesis as biomarkers to guide diagnosis and design treatment. This study summarizes findings describing the significant heterogeneity of GBM at the transcriptional and genomic levels, emphasizing 18 driver genes with clinical relevance. A pattern was identified fitting the stem cell model for GBM ontogenesis, with an upregulation profile for MGMT and downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal subtype. We also detected overexpression of EGFR, NES, VIM and TP53 in the classical subtype and of MKi67 and OLIG2 genes in the proneural subtype. Furthermore, we found a combination of the four biomarkers EGFR, NES, OLIG2 and VIM with a remarkable differential expression pattern which confers them a strong potential to determine the GBM molecular subtype. A unique distribution of somatic mutations was found for the young and adult population, particularly for genes related to DNA repair and chromatin remodelling, highlighting ATRX, MGMT and IDH1. Our results also revealed that highly lesioned genes undergo differential regulation with particular biological pathways for young patients. This multi-omic analysis will help delineate future strategies related to the use of these molecular markers for clinical decision-making in the medical routine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA