Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 35(11): 2805-2818, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137463

RESUMO

Phylogeny estimation is difficult for closely related populations and species, especially if they have been exchanging genes. We present a hierarchical Bayesian, Markov-chain Monte Carlo method with a state space that includes all possible phylogenies in a full Isolation-with-Migration model framework. The method is based on a new type of genealogy augmentation called a "hidden genealogy" that enables efficient updating of the phylogeny. This is the first likelihood-based method to fully incorporate directional gene flow and genetic drift for estimation of a species or population phylogeny. Application to human hunter-gatherer populations from Africa revealed a clear phylogenetic history, with strong support for gene exchange with an unsampled ghost population, and relatively ancient divergence between a ghost population and modern human populations, consistent with human/archaic divergence. In contrast, a study of five chimpanzee populations reveals a clear phylogeny with several pairs of populations having exchanged DNA, but does not support a history with an unsampled ghost population.


Assuntos
Fluxo Gênico , Técnicas Genéticas , Filogenia , Animais , Teorema de Bayes , Deriva Genética , Migração Humana , Humanos , Método de Monte Carlo , Pan troglodytes/genética
2.
Mol Biol Evol ; 34(6): 1517-1528, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333230

RESUMO

We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus.


Assuntos
Teorema de Bayes , Genômica/métodos , Algoritmos , Evolução Biológica , Demografia , Evolução Molecular , Variação Genética/genética , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo , Filogenia , Software
3.
Mol Biol Evol ; 34(2): 500-504, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025276

RESUMO

The Isolation with Migration (IM) programs (e.g., IMa2) have been utilized extensively by evolutionary biologists for model-based inference of demographic parameters including effective population sizes, migration rates, and divergence times. Here, we describe a graphical user interface for the latest IM program. IMGui provides a comprehensive set of tools for performing demographic analyses, tracking progress of runs, and visualizing results. Developed using node. js and the Electron framework, IMGui is an application that runs on any desktop operating system, and is available for download at https://github.com/jaredgk/IMgui-electron-packages.


Assuntos
Evolução Biológica , Software , Gráficos por Computador , Demografia/métodos , Fluxo Gênico , Interface Usuário-Computador
4.
PLoS Biol ; 3(6): e193, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15898833

RESUMO

The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size.


Assuntos
Etnicidade/genética , Genética Médica , Genética Populacional , Grupos Raciais/genética , Ásia/etnologia , Demografia , Variação Genética , Humanos , Indígenas Norte-Americanos/genética , Modelos Genéticos , América do Norte , Densidade Demográfica , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA