Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 244(2): 71-81, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37725696

RESUMO

AbstractWithin phylum Chordata, the subphylum Cephalochordata (amphioxus and lancelets) has figured large in considerations of the evolutionary origin of the vertebrates. To date, these discussions have been predominantly based on knowledge of a single cephalochordate genus (Branchiostoma), almost to the exclusion of the other two genera (Asymmetron and Epigonichthys). This uneven pattern is illustrated by cephalochordate hematology, until now known entirely from work done on Branchiostoma. The main part of the present study is to describe hemocytes in the dorsal aorta of a species of Asymmetron by serial block-face scanning electron microscopy. This technique, which demonstrates three-dimensional fine structure, showed that the hemocytes have a relatively uniform morphology characterized by an oval shape and scanty cytoplasm. Ancillary information is also included for Branchiostoma hemocytes, known from previous studies to have relatively abundant cytoplasm; our serial block-face scanning electron microscopy provides more comprehensive views of the highly variable shapes of these cells, which typically extend one or several pseudopodium-like protrusions. The marked difference in hemocyte morphology found between Asymmetron and Branchiostoma was unexpected and directs attention to investigating comparable cells in the genus Epigonichthys. A broader knowledge of the hemocytes in all three cephalochordate genera would provide more balanced insights into the evolution of vertebrate hematopoiesis.


Assuntos
Anfioxos , Animais , Bahamas , Cefalocordados , Hemócitos
2.
J Morphol ; 283(10): 1289-1298, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35971624

RESUMO

Tissues of adult cephalochordates include sparsely distributed fibroblasts. Previous work on these cells has left unsettled such questions as their developmental origin, range of functions, and even their overall shape. Here, we describe fibroblasts of a cephalochordate, the Bahamas lancelet, Asymmetron lucayanum, by serial block-face scanning electron microscopy to demonstrate their three-dimensional (3D) distribution and fine structure in a 0.56-mm length of the tail. The technique reveals in detail their position, abundance, and morphology. In the region studied, we found only 20 fibroblasts, well separated from one another. Each was strikingly stellate with long cytoplasmic processes rather similar to those of a vertebrate telocyte, a possibly fortuitous resemblance that is considered in the discussion section. In the cephalochordate dermis, the fibroblasts were never linked with one another, although they occasionally formed close associations of unknown significance with other cell types. The fibroblasts, in spite of their name, showed no signs of directly synthesizing fibrillar collagen. Instead, they appeared to be involved in the production of nonfibrous components of the extracellular matrix-both by the release of coarsely granular dense material and by secretion of more finely granular material by the local breakdown of their cytoplasmic processes. For context, the 3D structures of two other mesoderm-derived tissues (the midline mesoderm and the posteriormost somite) are also described for the region studied.


Assuntos
Anfioxos , Animais , Bahamas , Derme/diagnóstico por imagem , Fibroblastos , Microscopia Eletrônica de Varredura
3.
J Morphol ; 282(2): 217-229, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179804

RESUMO

Lancelets (Phylum Chordata, subphylum Cephalochordata) readily regenerate a lost tail. Here, we use light microscopy and serial blockface scanning electron microscopy (SBSEM) to describe tail replacement in the Bahamas lancelet, Asymmetron lucayanum. One day after amputation, the monolayered epidermis has migrated over the wound surface. At 4 days, the regenerate is about 3% as long as the tail length removed. The re-growing nerve cord is a tubular outgrowth of ependymal cells, and the new part of the notochord consists of several degenerating lamellar cells anterior to numerous small vacuolated cells. The cut edges of the mesothelium project into the regenerate as tubular extensions. These tubes anastomose with each other and with midline mesodermal canals beneath the regenerating edges of the dorsal and ventral fins. SBSEM did not reveal a blastema-like aggregation of undifferentiated cells anywhere in the regenerate. At 6 days, the regenerate (10% of the amputated tail length) includes a notochord in which the small vacuolated cells mentioned above are differentiating into lamellar cells. At 10 days, the regenerate is 22% of the amputated tail length: myocytes have appeared in the walls of the myomeres, and sclerocoels have formed. By 14 days, the regenerate is 35% the length of the amputated tail, and the new tissues resemble smaller versions of those originally lost. The present results for A. lucayanum, a species regenerating quickly and with little inter-specimen variability, provide the morphological background for future cell-tracer, molecular genetic, and genomic studies of cephalochordate regeneration.


Assuntos
Anfioxos/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Amputação Cirúrgica , Animais , Bahamas , Anfioxos/genética , Anfioxos/ultraestrutura , Cauda/ultraestrutura
4.
Evodevo ; 11: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088474

RESUMO

BACKGROUND: The cellular basis of adult growth in cephalochordates (lancelets or amphioxus) has received little attention. Lancelets and their constituent organs grow slowly but continuously during adult life. Here, we consider whether this slow organ growth involves tissue-specific stem cells. Specifically, we focus on the cell populations in the notochord of an adult lancelet and use serial blockface scanning electron microscopy (SBSEM) to reconstruct the three-dimensional fine structure of all the cells in a tissue volume considerably larger than normally imaged with this technique. RESULTS: In the notochordal region studied, we identified 10 cells with stem cell-like morphology at the posterior tip of the organ, 160 progenitor (Müller) cells arranged along its surface, and 385 highly differentiated lamellar cells constituting its core. Each cell type could clearly be distinguished on the basis of cytoplasmic density and overall cell shape. Moreover, because of the large sample size, transitions between cell types were obvious. CONCLUSIONS: For the notochord of adult lancelets, a reasonable interpretation of our data indicates growth of the organ is based on stem cells that self-renew and also give rise to progenitor cells that, in turn, differentiate into lamellar cells. Our discussion compares the cellular basis of adult notochord growth among chordates in general. In the vertebrates, several studies implied that proliferating cells (chordoblasts) in the cortex of the organ might be stem cells. However, we think it is more likely that such cells actually constitute a progenitor population downstream from and maintained by inconspicuous stem cells. We venture to suggest that careful searches should find stem cells in the adult notochords of many vertebrates, although possibly not in the notochordal vestiges (nucleus pulposus regions) of mammals, where the presence of endogenous proliferating cells remains controversial.

5.
Biol Bull ; 228(1): 13-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25745097

RESUMO

The cephalochordate genera Branchiostoma and Asymmetron diverged during the Mesozoic Era. In spite of the long separation of the parental clades, eggs of the Florida amphioxus, B. floridae, when fertilized with sperm of the Bahamas lancelet, A. lucayanum (and vice versa), develop through embryonic and larval stages. The larvae reach the chordate phylotypic stage (i.e., the pharyngula), characterized by a dorsal nerve cord, notochord, perforate pharynx, and segmented trunk musculature. After about 2 weeks of larval development, the hybrids die, as do the A. lucayanum purebreds, although all were eating the same algal diet that sustains B. floridae purebreds through adulthood in the laboratory; it is thus unclear whether death of the hybrids results from incompatible parental genomes or an inadequate diet. The diploid chromosome count in A. lucayanum and B. floridae purebreds is, respectively, 34 and 38, whereas it is 36 in hybrids in either direction. The hybrid larvae exhibit several morphological characters intermediate between those of the parents, including the size of the preoral ciliated pit and the angles of deflection of the gill slits and anus from the ventral midline. Based on the time since the two parent clades diverged (120 or 160 million years, respectively, by nuclear and mitochondrial gene analysis), the cross between Branchiostoma and Asymmetron is the most extreme example of hybridization that has ever been unequivocally demonstrated among multicellular animals.


Assuntos
Anfioxos/anatomia & histologia , Anfioxos/genética , Animais , Bahamas , Cromossomos/genética , Florida , Hibridização Genética , Anfioxos/embriologia , Anfioxos/crescimento & desenvolvimento , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA