Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 132: 102566, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331538

RESUMO

Pelagic Sargassum in the Gulf of Mexico (GoM) plays an important role in ocean biology and ecology, yet our knowledge of its origins and transport pathways is limited. Here, using satellite observations of Sargassum areal density and ocean surface currents between 2000 and 2023, we show that large amounts of Sargassum in the GoM can either originate from the northwestern GoM or be a result of physical transport from the northwestern Caribbean Sea, both with specific transport pathways. Sargassum of the northwestern GoM can be transported to the eastern GoM by ocean currents and eddies, eventually entering the Sargasso Sea. Sargassum entering the GoM from the northwestern Caribbean Sea can be transported in three different directions, with the northward and eastward transports governed by the Loop Current System (LCS) and westward transport driven by the westward extension of the LCS, the propagation or relaying of ocean eddies, the wind-driven westward currents on the Campeche Bank with or without eddies, and the westward currents with/without currents associated with eddies in the northern/central GoM. Overall, the spatial distribution patterns of pelagic Sargassum in the GoM are strongly influenced by the LCS and relevant eddies.


Assuntos
Sargassum , Golfo do México , Meio Ambiente , Região do Caribe , Ecologia
2.
Environ Sci Technol ; 57(28): 10373-10381, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37347705

RESUMO

Hurricane Katrina (category 5 with maximum wind of 280 km/h when the eye is in the central Gulf of Mexico) made landfall near New Orleans on August 29, 2005, causing millions of cubic meters of disaster debris, severe flooding, and US$125 billion in damage. Yet, despite numerous reports on its environmental and economic impacts, little is known about how much debris has entered the marine environment. Here, using satellite images (MODIS, MERIS, and Landsat), airborne photographs, and imaging spectroscopy, we show the distribution, possible types, and amount of Katrina-induced debris in the northern Gulf of Mexico. Satellite images collected between August 30 and September 19 show elongated image features around the Mississippi River Delta in a region bounded by 92.5°W-87.5°W and 27.8°N-30.25°N. Image spectroscopy and color appearance of these image features indicate that they are likely dominated by driftwood (including construction lumber) and dead plants (e.g., uprooted marsh) and possibly mixed with plastics and other materials. The image sequence shows that if aggregated together to completely cover the water surface, the maximal debris area reached 21.7 km2 on August 31 to the east of the delta, which drifted to the west following the ocean currents. When measured by area in satellite images, this perhaps represents a historical record of all previously reported floating debris due to natural disasters such as hurricanes, floodings, and tsunamis.


Assuntos
Tempestades Ciclônicas , Desastres , Golfo do México , Inundações , Mississippi
3.
Mar Pollut Bull ; 136: 141-151, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30509795

RESUMO

An oil platform in the Mississippi Canyon 20 (MC-20) site was damaged by Hurricane Ivan in September 2004. In this study, we use medium- to high-resolution (10-30 m) optical remote sensing imagery to systematically assess oil spills near this site for the period between 2004 and 2016. Image analysis detects no surface oil in 2004, but ~40% of the cloud-free images in 2005 show oil slicks, and this number increases to ~70% in 2006-2011, and >80% since 2012. For all cloud-free images from 2005 through 2016 (including those without oil slicks), delineated oil slicks show an average oil coverage of 14.9 km2/image, with an estimated oil discharge rate of 48 to ~1700 barrels/day, and a cumulative oil-contaminated area of 1900 km2 around the MC-20 site. Additional analysis suggests that the detected oil slick distribution can be largely explained by surface currents, winds, and density fronts.


Assuntos
Monitoramento Ambiental/métodos , Indústria de Petróleo e Gás/normas , Poluição por Petróleo/análise , Tecnologia de Sensoriamento Remoto/métodos , Vazamento de Resíduos Químicos , Tempestades Ciclônicas , Golfo do México , Vento
4.
Harmful Algae ; 66: 40-46, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602252

RESUMO

In summer 2014, a toxic Karenia brevis bloom (red tide) occurred in the NE Gulf of Mexico, during which vertical migration of K. brevis has been observed from glider measurements. The current study shows that satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) can capture changes in surface reflectance and chlorophyll concentration occurring within 2h, which may be attributed this K. brevis vertical migration. The argument is supported by earlier glider measurements in the same bloom, by the dramatic changes in the VIIRS-derived surface chlorophyll, and by the consistency between the short-term reflectance changes and those reported earlier from field-measured K. brevis vertical migration. Estimates using the quasi-analytical algorithm also indicate significant increases in both total absorption coefficient and backscattering coefficient in two hours. The two observations in a day from a single polar-orbiting satellite sensor are thus shown to be able to infer phytoplankton vertical movement within a short timeframe, a phenomenon difficult to capture with other sensors as each sensor can provide at most one observation per day, and cross-sensor inconsistency may make interpretation of merged-sensor data difficult. These findings strongly support geostationary satellite missions to study short-term bloom dynamics.


Assuntos
Clorofila/análise , Dinoflagellida/fisiologia , Monitoramento Ambiental , Proliferação Nociva de Algas , Água do Mar/análise , Golfo do México , Tecnologia de Sensoriamento Remoto , Água do Mar/química
5.
Mar Pollut Bull ; 107(1): 15-21, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170625

RESUMO

Using high-resolution airborne measurements and more synoptic coverage of Landsat measurements, we estimated the total Sargassum coverage in the northeastern Gulf of Mexico (NE GOM) during 2010, with the ultimate purpose to infer how much Sargassum might have been in contact with oil from the Deepwater Horizon oil spill. Mean Sargassum coverage during the four quarters of 2010 for the study region was estimated to range from ~3148±2355km(2) during January-March to ~7584±2532km(2) during July-September (95% confidence intervals) while estimated Sargassum coverage within the integrated oil footprint ranged from 1296±453km(2) (for areas with >5% thick oil) to 736±257km(2) (for areas with >10% thick oil). Similar to previous studies on estimating Sargassum coverage, a direct validation of such estimates is impossible given the heterogeneity and scarcity of Sargassum occurrence. Nonetheless, these estimates provide preliminary information to understand relative Sargassum abundance in the NE GOM.


Assuntos
Monitoramento Ambiental , Poluição por Petróleo , Sargassum , Golfo do México
6.
Mar Pollut Bull ; 103(1-2): 276-285, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26725867

RESUMO

Using fine spatial resolution (~7.6m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N=52,100 continuous features) binned into four thickness classes (≤50 µm but thicker than sheen, 50-200 µm, 200-1000 µm, and >1000 µm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7-11 m, and 2.5-3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin. Overall, if 50% fractional pixel coverage were to be required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor would be needed.


Assuntos
Monitoramento Ambiental/métodos , Poluição por Petróleo , Sistemas de Informação Geográfica , México , Movimentos da Água
7.
Harmful Algae ; 58: 59-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073459

RESUMO

The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000cellsL-1, the stratified water shows a two-layer system with the depth of pycnocline ranging between 14-20m and salinity and temperature in the surface layer being <34.8 and >28°C, respectively. The bottom layer shows the salinity of >36 and temperature of <26°C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5-1mh-1. The upward migration appears to start at sunrise at a depth of 8-10m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment.


Assuntos
Dinoflagellida/fisiologia , Monitoramento Ambiental , Proliferação Nociva de Algas/fisiologia , Água do Mar/parasitologia , Golfo do México , Salinidade , Luz Solar , Temperatura
8.
Mar Pollut Bull ; 101(2): 632-41, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26507512

RESUMO

The Ixtoc-I oil spill occurred in 1979 in shallow waters (50 m) of the Bay of Campeche, Mexico. Although it is known that a large portion of the released oil from this second largest accidental marine oil spill in history reached the surface, to date there has been no attempt to document the surface footprint and trajectory of the released oil. Our study attempts to fill this knowledge gap using remote sensing data collected by Landsat/MSS and CZCS. Both showed the same general patterns of oil trajectory to the northwest and north, nearly parallel to the coastline of the western Gulf of Mexico (GoM) with possible oil landing on Mexican and Texas beaches. Field observations at selected beaches and islands along the coast of the western and southern GoM during and after the spill confirmed these satellite-based findings, which were also used to help in planning a recent field campaign to collect sediment samples in the southern GoM.


Assuntos
Poluição por Petróleo/análise , Praias , Monitoramento Ambiental/métodos , Golfo do México , México , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Texas
9.
Sensors (Basel) ; 15(2): 2873-87, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25635412

RESUMO

The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches-as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L(-1) within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission.


Assuntos
Clorofila/isolamento & purificação , Monitoramento Ambiental , Proliferação Nociva de Algas , Fitoplâncton/crescimento & desenvolvimento , Clorofila/química , Clorofila A , Fluorescência , Golfo do México , Humanos , México , Fitoplâncton/patogenicidade , Imagens de Satélites , Estados Unidos
10.
PLoS One ; 9(12): e114893, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551564

RESUMO

This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.


Assuntos
Peixes , Proliferação Nociva de Algas , Som , Animais , Dinoflagellida/crescimento & desenvolvimento , Golfo do México , Oceanografia , Dispositivos Ópticos , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA