Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166898, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774936

RESUMO

Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.


Assuntos
Doença de Alzheimer , Poro de Transição de Permeabilidade Mitocondrial , Animais , Camundongos , Doença de Alzheimer/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
2.
J Bioenerg Biomembr ; 47(6): 477-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26530988

RESUMO

It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel ((Sc)MUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg(2+), Ca(2+) or phosphate (Pi) close (Sc)MUC, while ATP or a high rate of oxygen consumption open it. We assessed (Sc)MUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca(2+)] and/or [Mg(2+)] were needed to close (Sc)MUC or increase ATP synthesis. The Ca(2+)-mediated closure of (Sc)MUC was prevented by high [ATP] while the Mg(2+) or Pi effect was not. When Ca(2+) and Mg(2+) were alternatively added or chelated, (Sc)MUC opened and closed reversibly. Different effects of Ca(2+) vs Mg(2+) effects were probably due to mitochondrial Mg(2+) uptake. Our results suggest that (Sc)MUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of (Sc)MUC leads to physiological uncoupling and a consequent decrease in ROS production.


Assuntos
Cálcio/metabolismo , Magnésio/metabolismo , Mitocôndrias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA