Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Cardiothorac Vasc Anesth ; 38(3): 717-723, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212185

RESUMO

OBJECTIVES: In a subset of patients with COVID-19 acute respiratory distress syndrome (ARDS), there is a need for extracorporeal membrane oxygenation (ECMO) for pulmonary support. The primary extracorporeal support tool for severe COVID-19 ARDS is venovenous (VV) ECMO; however, after hypoxemic respiratory failure resolves, many patients experience refractory residual hypercarbic respiratory failure. Extracorporeal carbon dioxide removal (ECCO2R) for isolated hypercarbic type II respiratory failure can be used in select cases to deescalate patients from VV ECMO while the lung recovers the ability to exchange CO2. The objective of this study was to describe the authors' experience in using ECCO2R as a bridge from VV ECMO. DESIGN: Hemolung Respiratory Assist System (RAS) is a commercially available (ECCO2R) device, and the United States Food and Drug Administration accelerated its use under its Emergency Use Authorization for the treatment of refractory hypercarbic respiratory failure in COVID-19-induced ARDS. This created an environment in which selected and targeted mechanical circulatory support therapy for refractory hypercarbic respiratory failure could be addressed. This retrospective study describes the application of Hemolung RAS as a VV ECMO deescalation platform to treat refractory hypercarbic respiratory failure after the resolution of hypoxemic COVID-19 ARDS. SETTING: A quaternary-care academic medical center, single institution. PARTICIPANTS: Patients with refractory hypercarbic respiratory failure after COVID-19 ARDS who were previously supported with VV ECMO. MEASUREMENTS AND MAIN RESULTS: Twenty-one patients were placed on ECCO2R after VV ECMO for COVID-19 ARDS. Seventeen patients successfully were transitioned to ECCO2R and then decannulated; 3 patients required reescalation to VV ECMO secondary to hypercapnic respiratory failure, and 1 patient died while on ECCO2R. Five (23.8%) of the 21 patients were transitioned off of VV ECMO to ECCO2R, with a compliance of <20 (mL/cmH2O). Of these patients, 3 with low compliance were reescalated to VV ECMO. CONCLUSIONS: Extracorporeal carbon dioxide removal can be used to continue supportive methods for patients with refractory type 2 hypercarbic respiratory failure after COVID-19 ARDS for patients previously on VV ECMO. Patients with low compliance have a higher rate of reescalation to VV ECMO.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Dióxido de Carbono , Estudos Retrospectivos , COVID-19/complicações , COVID-19/terapia , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia
4.
JTCVS Tech ; 18: 65-73, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37096080

RESUMO

Objectives: Percutaneous pulmonary artery cannulas, used as inflow for left ventricular venting or as outflow for right ventricular mechanical circulatory support, are easily and rapidly deployable with transesophageal and fluoroscopic guidance. Methods: We chose to review our institutional and technical experience with all right atrium to pulmonary artery cannulations. Results: Based on the review, we describe 6 right atrium to pulmonary artery cannulation strategies. They are divided into total right ventricular assist support, partial right ventricular assist support, and left ventricular venting. A single limb cannula or a dual lumen cannula can be used for right ventricular support. Conclusions: In the right ventricular assist device configuration, percutaneous cannulation may prove beneficial in cases of isolated right ventricular failure. Conversely, pulmonary artery cannulation can be used for left ventricular venting as drainage to a cardiopulmonary bypass or extracorporeal membrane oxygenation circuit. This article can be used as a reference for the technical aspects of cannulation, decision-making in patient selection, and management of patients in these clinical scenarios.

5.
ASAIO J ; 69(8): e391-e396, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867841

RESUMO

Extracorporeal membrane oxygenation (ECMO) is used in cases of severe respiratory failure refractory to medical management. Use of ECMO is increasing, along with new cannulation strategies including oxygenated right ventricular assist devices (oxy-RVADs). Multiple dual lumen cannulas are now available, which increase the potential for patient mobility and decrease the number of vascular access sites. However, dual lumen, single cannula flow can be limited by adequate inflow, requiring the need for an additional inflow cannula to meet patient demands. This cannula configuration may result in differential flows in the inflow and outflow limbs and altered flow dynamics, increasing the risk of intracannula thrombus. We describe a series of four patients treated with oxy-RVAD for COVID-19-associated respiratory failure complicated by dual lumen ProtekDuo intracannula thrombus.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Insuficiência Respiratória , Trombose , Humanos , Cânula , Oxigenação por Membrana Extracorpórea/efeitos adversos , COVID-19/complicações , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Trombose/etiologia
7.
JTCVS Open ; 8: 393-400, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36004109

RESUMO

Objective: Patients with profound cardiogenic shock may require venoarterial (VA) extracorporeal membrane oxygenation (ECMO) for circulatory support most commonly via the femoral vessels. The rate of cardiac recovery in this population remains low, possibly because peripheral VA-ECMO increases ventricular afterload. Whether direct ventricular unloading in peripheral VA-ECMO enhances cardiac recovery is unknown, but is being more frequently utilized. A randomized trial is warranted to evaluate the clinical effectiveness of percutaneous left ventricle venting to enhance cardiac recovery in the setting of VA-ECMO. Methods: We describe the rationale, design, and initial testing of a randomized controlled trial of VA-ECMO with and without percutaneous left ventricle venting using a percutaneous micro-axial ventricular assist device. Results: This is an ongoing prospective randomized controlled trial in adult patients with primary cardiac failure presenting in cardiogenic shock requiring peripheral VA-ECMO, designed to test the safety and effectiveness of percutaneous left ventricle venting in improving the rate of cardiac recovery. Conclusions: The results of this nonindustry-sponsored trial will provide critical information on whether left ventricle unloading in peripheral VA-ECMO is safe and effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA