Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323802

RESUMO

Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.

2.
Materials (Basel) ; 13(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291216

RESUMO

Electrospun nanofibers are used for many applications due to their large surface area, mechanical properties, and bioactivity. Bacterial biofilms are the cause of numerous problems in biomedical devices and in the food industry. On the other hand, these bacterial biofilms can produce interesting metabolites. Hence, the objective of this study is to evaluate the efficiency of poly (Ɛ- caprolactone)/Curcumin (PCL/CUR) nanofibers to promote bacterial biofilm formation. These scaffolds were characterized by scanning electron microscopy (SEM), which showed homogeneous fibers with diameters between 441-557 nm; thermogravimetric analysis and differential scanning calorimetry (TGA and DSC) demonstrated high temperature resilience with degradation temperatures over >350 °C; FTIR and 1H-NMR serve as evidence of CUR incorporation in the PCL fibers. PCL/CUR scaffolds successfully promoted the formation of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa biofilms. These results will be valuable in the study of controlled harvesting of pathogenic biofilms as well as in metabolites production for biotechnological purposes.

3.
Materials (Basel) ; 12(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569449

RESUMO

In recent decades, there has been an increase in the research for the development and improvement of dye sensitized solar cells (DSSCs), owing to their singular advantages such as greater efficiency in energy conversion and overall performance in adverse environmental conditions. Therefore, work is carried out to enhance the energy efficiency of the components of the DSSCs: photoanode, counter-electrode, electrolyte, and dye sensitizer layer. Electrospun nanofibers in particular, have showed to be a novel alternative as components in DSSCs, mainly for energy conversion and as collector materials due in part to their tridimensional structure, high contact surface area and conductivity. Moreover, the incorporation of metallic compounds into nanofibers is advantageously employed in the electrospinning technique, owing to their conductivity and optical properties. Therefore, the present work consists of a detailed recompilation of the use of electrospun nanofibers loaded with metallic compounds and their application in DSSCs. The functionality of the components of DSSCs, parameters and experimental conditions of electrospinning, such as the intrinsic aspects in the polymer solution, are discussed and applied to the photoanode, counter-electrode and electrolyte of the DSSC. Lastly, the use of the electrospinning technique in combination with the use of metallic compounds could provide a great approach for the developing of DSSCs, with superior efficiency, high stability and durability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA