Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(56): 118872-118880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919495

RESUMO

Coral-reef ecosystems provide essentials services to human societies, representing the most important source of income (e.g., tourism and artisanal fishing) for many coastal developing countries. In the Caribbean region, most touristic and coastal developments are in the vicinity of coral reefs where they may contribute to reef degradation. Here we evaluated the influence of sewage inputs in the coral reef lagoon of Puerto Morelos during a period of 40 years (1970-2012). Annual δ15N values were determined in the organic matter (OM) extracted from coral skeletons of Orbicella faveolata. Average protein content in the OM was 0.33 mg of protein g-1 CaCO3 (±0.10 SD) and a 0.03% of OM relative to the sample weight (n =100). The average of N g-1 CaCO3 was 0.002% (± 0.001 SD). The results showed an increase (p < 0.001) in δ15N over the time, positively correlated with population growth derived from touristic development. These findings emphasize the need to generate urban-planning remediation strategies that consider the impact on natural environments, reduce sewage pollution, and mitigate local stressors that threaten the status of coral-reef communities in the Caribbean region.


Assuntos
Antozoários , Recifes de Corais , Animais , Humanos , Ecossistema , Esgotos , Efeitos Antropogênicos , Região do Caribe
2.
Commun Biol ; 5(1): 1418, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572721

RESUMO

After three decades of coral research on the impacts of climate change, there is a wide consensus on the adverse effects of heat-stress, but the impacts of ocean acidification (OA) are not well established. Using a review of published studies and an experimental analysis, we confirm the large species-specific component of the OA response, which predicts moderate impacts on coral physiology and pigmentation by 2100 (scenario-B1 or SSP2-4.5), in contrast with the severe disturbances induced by only +2 °C of thermal anomaly. Accordingly, global warming represents a greater threat for coral calcification than OA. The incomplete understanding of the moderate OA response relies on insufficient attention to key regulatory processes of these symbioses, particularly the metabolic dependence of coral calcification on algal photosynthesis and host respiration. Our capacity to predict the future of coral reefs depends on a correct identification of the main targets and/or processes impacted by climate change stressors.


Assuntos
Antozoários , Animais , Antozoários/metabolismo , Mudança Climática , Água do Mar , Concentração de Íons de Hidrogênio , Recifes de Corais
3.
PeerJ ; 5: e4119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259841

RESUMO

Coral reefs are commonly associated with oligotrophic, well-illuminated waters. In 2013, a healthy coral reef was discovered in one of the least expected places within the Colombian Caribbean: at the entrance of Cartagena Bay, a highly-polluted system that receives industrial and sewage waste, as well as high sediment and freshwater loads from an outlet of the Magdalena River (the longest and most populated river basin in Colombia). Here we provide the first characterization of Varadero Reef's geomorphology and biological diversity. We also compare these characteristics with those of a nearby reference reef, Barú Reef, located in an area much less influenced by the described polluted system. Below the murky waters, we found high coral cover of 45.1% (±3.9; up to 80% in some sectors), high species diversity, including 42 species of scleractinian coral, 38 of sponge, three of lobster, and eight of sea urchin; a fish community composed of 61 species belonging to 24 families, and the typical zonation of a Caribbean fringing reef. All attributes found correspond to a reef that, according to current standards should be considered in "good condition". Current plans to dredge part of Varadero threaten the survival of this reef. There is, therefore, an urgent need to describe the location and characteristics of Varadero as a first step towards gaining acknowledgement of its existence and garnering inherent legal and environmental protections.

4.
Sci Rep ; 7(1): 4937, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694432

RESUMO

The potential effects of seasonal acclimatization on coral sensitivity to heat-stress, has received limited attention despite differing bleaching thresholds for summer and winter. In this study, we examined the response of two contrasting phenotypes, termed winter and summer, of four Caribbean reef corals to similar light and heat-stress levels. The four species investigated were categorized into two groups: species with the ability to harbour large number of symbionts, Orbicella annularis and O. faveolata, and species with reduced symbiont density (Montastraea cavernosa and Pseudodiploria strigosa). The first group showed higher capacity to enhance photosynthetic rates per area (Pmax), while Pmax enhancement in the second group was more dependent on Symbiodinium performance (Psym). In summer all four species presented higher productivity, but also higher sensitivity to lose coral photosynthesis under heat-stress. In contrast, corals in winter exhibit symbionts with higher capacity to photoacclimate to the increased levels of light-stress elicited by heat-stress. Overall, our study supports the importance of the acclimatory coral condition in addition to the previous thermal history, to determine the severity of the impact of heat-stress on coral physiology, but also the dependence of this response on the particular structural and functional traits of the species.


Assuntos
Antozoários/fisiologia , Resposta ao Choque Térmico , Estações do Ano , Animais , Clima , Fenótipo , Processos Fotoquímicos
5.
Photosynth Res ; 132(3): 311-324, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28493057

RESUMO

The analysis of the variation of the capacity and efficiency of photosynthetic tissues to collect solar energy is fundamental to understand the differences among species in their ability to transform this energy into organic molecules. This analysis may also help to understand natural changes in species distribution and/or abundance, and differences in species ability to colonize contrasting light environments or respond to environmental changes. Unfortunately, the challenge that optical determinations on highly dispersive samples represent has strongly limited the progression of this analysis on multicellular tissues, limiting our knowledge of the role that optical properties of photosynthetic tissues may play in the optimization of photosynthesis and growth of benthonic primary producers. The aim of this study is to stimulate the use of optical tools in marine eco-physiology, offering a succinct description of the more convenient tools and also solutions to resolve the more common technical difficulties that arise while performing optical determinations on highly dispersive samples. Our study focuses on two-dimensional (2D-) parameters: absorptance, transmittance, and reflectance, and illustrates with correct and incorrect examples, specific problems and their respective solutions. We also offer a general view of the broad variation in light absorption shown by photosynthetic structures of marine primary producers, and its low association with pigment content. The ecological and evolutionary functional implications of this variability deserve to be investigated across different taxa, populations, and marine environments.


Assuntos
Luz , Fotossíntese/fisiologia , Clorofila/metabolismo , Folhas de Planta/metabolismo
6.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446691

RESUMO

Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Luz , Animais , Ecologia , Fenômenos Ópticos , Simbiose
7.
PLoS One ; 12(2): e0171032, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152002

RESUMO

Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host and consequently holobiont parameters may partially explain their persistence on reefs faced with climate change.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Aclimatação/fisiologia , Animais , Antozoários/química , Região do Caribe , Clorofila/análise , Clorofila/metabolismo , Clorofila A , Dinoflagellida/genética , Enzimas/metabolismo , Genótipo , México , Água do Mar , Simbiose/fisiologia , Temperatura
8.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26705570

RESUMO

Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.


Assuntos
Antozoários/microbiologia , Biofilmes/classificação , Microbiota/genética , Animais , Sequência de Bases , Carbonato de Cálcio/metabolismo , Região do Caribe , Recifes de Corais , DNA Bacteriano/genética , Ecossistema , Temperatura Alta , Concentração de Íons de Hidrogênio , Compostos de Magnésio/metabolismo , México , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
PLoS One ; 8(12): e82923, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367570

RESUMO

High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m(-2) specimen area d(-1), respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m(-2) lagoon area d(-1)) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems.


Assuntos
Recifes de Corais , Animais , Antozoários , Ecossistema , México , Alga Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA