Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Malar J ; 15(1): 484, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27654047

RESUMO

BACKGROUND: Non-synonymous mutations in dhfr and dhps genes in Plasmodium vivax are associated with sulfadoxine-pyrimethamine (SP) resistance. The present study aimed to assess the prevalence of point mutations in P. vivax dhfr (pvdhfr) and P. vivax dhps (pvdhps) genes in three countries: Lao PDR, India and Colombia. METHODS: Samples from 203 microscopically diagnosed vivax malaria were collected from the three countries. Five codons at positions 13, 57, 58, 61, and 117 of pvdhfr and two codons at positions 383 and 553 of pvdhps were examined by polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS: The largest number of 58R/117 N double mutations in pvdhfr was observed in Colombia (94.3 %), while the corresponding wild-type amino acids were found at high frequencies in Lao PDR during 2001-2004 (57.8 %). Size polymorphism analysis of the tandem repeats within pvdhfr revealed that 74.3 % of all the isolates carried the type B variant. Eighty-nine per cent of all the isolates examined carried wild-type pvdhps A383 and A553. CONCLUSIONS: Although SP is not generally used to treat P. vivax infections, mutations in dhfr and dhps that confer antifolate resistance in P. vivax are common. The data strongly suggest that, when used primarily to treat falciparum malaria, SP can exert a substantial selective pressure on P. vivax populations, and this can lead to point mutations in dhfr and dhps. Accurate data on the global geographic distribution of dhfr and dhps genotypes should help to inform anti-malarial drug-use policies.

2.
Acta Trop ; 119(1): 23-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21497586

RESUMO

Genetic diversity of Plasmodium populations has been more extensively documented in Colombia for Plasmodium falciparum than for Plasmodium vivax. Recently, highly variable microsatellite markers have been described and used in population-level studies of genetic variation of P. vivax throughout the world. We applied this approach to understand the genetic structure of P. vivax populations and to identify recurrence-associated haplotypes. In this, three microsatellite markers of P. vivax were amplified and the combined size of the fragments was used to establish genotypes. Patients from an ongoing treatment efficacy trial who were kept either in endemic or non-endemic regions in the northwest of Colombia were included in the study. In total 58 paired clinical isolates, were amplified. A total of 54 haplotypes were observed among the two regions. Some haplotypes were exclusive to the endemic region where the highest degree of polymorphism was detected. In addition, we confirmed the different genotypes of recurrent-relapsing and primary infection isolates suggesting the activation of heterologous hypnozoite populations. We conclude that analysis of the three microsatellites is a valuable tool to establish the genetic characteristics of P. vivax populations in Colombia.


Assuntos
Sangue/parasitologia , DNA de Protozoário/genética , Genética Populacional , Malária Vivax/parasitologia , Plasmodium vivax/genética , Polimorfismo Genético , Alelos , Colômbia/epidemiologia , Seguimentos , Frequência do Gene , Haplótipos , Heterozigoto , Humanos , Malária Vivax/epidemiologia , Repetições de Microssatélites , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Int J Parasitol ; 37(8-9): 1013-22, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17442318

RESUMO

Populations of Plasmodium falciparum show striking differences in linkage disequilibrium, population differentiation and diversity, but only fragmentary data exists on the genetic structure of Plasmodium vivax. We genotyped nine tandem repeat loci bearing 2-8 bp motifs from 345 P. vivax infections collected from three Asian countries and from five locations in Colombia. We observed 9-37 alleles per locus and high diversity (He=0.72-0.79, mean=0.75) in all countries. Numbers of multiple clone infections varied considerably: these were rare in Colombia and India, but > 60% of isolates carried multiple alleles in at least one locus in Thailand and Laos. However, only one or two of the nine loci show >1 allele in many samples, suggesting that mutation within infections may result in overestimation of true multiple carriage rates. Identical nine-locus genotypes were frequently found in Colombian populations, contributing to strong linkage disequilibrium. These identical genotypes were strongly clustered in time, consistent with epidemic transmission of clones and subsequent breakdown of allelic associations, suggesting high rates of inbreeding and low effective recombination rates in this country. In contrast, identical genotypes were rare and loci were randomly associated in all three Asian populations, consistent with higher rates of outcrossing and recombination. We observed low but significant differentiation between different Asian countries (standardized FST = 0.13-0.45). In comparison, we see greater differentiation between collection locations within Colombia (standardized FST = 0.4-0.7), and strong differentiation between continents (standardized FST = 0.48-0.79). The observed heterogeneity in multiple clone carriage rates, linkage disequilibrium and population differentiation are similar in some, but not all, respects to those observed in P. falciparum, and have important implications for the design of association mapping studies, and interpretation of P. vivax epidemiology.


Assuntos
Variação Genética , Plasmodium vivax/genética , Animais , Ásia , Demografia , Desequilíbrio de Ligação , Repetições de Microssatélites , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA