Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 204(3): 575-588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376632

RESUMO

The role of facilitation in shaping natural communities has primarily been studied in the context of plant assemblages, while its relevance for mobile animals remains less understood. Our study investigates whether reciprocal interspecific facilitation may exist between fire ants (Solenopsis richteri) and cavies (Cavia aperea), two mobile animals, in the SW Atlantic coast brackish marshes. Field samples showed a spatial association between ant mounds and cavies, and that ants prefer to use cavy runways for movement within the marsh. Through experiments involving transplanting the dominant plant, cordgrass (Spartina densiflora), and manipulating cavy presence in areas with and without ant mounds, we observed that cavies forage extensively (and defecate more) near ant mounds. The ants actively remove cavy droppings in their mound vicinity. These ant activities and interactions with cavy droppings led to reduced moisture and organic content while increasing nitrate and phosphate levels in marsh sediment. Consequently, this enhanced plant growth, indirectly facilitating the cavies, which preferred consuming vegetation near ant mounds. These cascading indirect effects persisted over time; even four months after cavies left the marshes, transplanted plants near ant mounds remained larger and exhibited more leaf senescence when exposed to cavy herbivory. Therefore, the networks of positive interactions appear to generate simultaneous selection among species (populations), promoting coexistence within the community. Although complex, these reciprocal facilitative effects among mobile animals may be more common than currently believed and should be further studied to gain a better understanding of the underlying mechanisms driving species coexistence in natural communities.


Assuntos
Formigas , Áreas Alagadas , Animais , Cobaias , Herbivoria , Plantas , Mamíferos
2.
Nat Commun ; 14(1): 8500, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135682

RESUMO

Coastal vegetated ecosystems are acknowledged for their capacity to sequester organic carbon (OC), known as blue C. Yet, blue C global accounting is incomplete, with major gaps in southern hemisphere data. It also shows a large variability suggesting that the interaction between environmental and biological drivers is important at the local scale. In southwest Atlantic salt marshes, to account for the space occupied by crab burrows, it is key to avoid overestimates. Here we found that southern southwest Atlantic salt marshes store on average 42.43 (SE = 27.56) Mg OC·ha-1 (40.74 (SE = 2.7) in belowground) and bury in average 47.62 g OC·m-2·yr-1 (ranging from 7.38 to 204.21). Accretion rates, granulometry, plant species and burrowing crabs were identified as the main factors in determining belowground OC stocks. These data lead to an updated global estimation for stocks in salt marshes of 185.89 Mg OC·ha-1 (n = 743; SE = 4.92) and a C burial rate of 199.61 g OC·m-2·yr-1 (n = 193; SE = 16.04), which are lower than previous estimates.


Assuntos
Braquiúros , Áreas Alagadas , Animais , Ecossistema , Carbono , Sequestro de Carbono
3.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002217

RESUMO

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Assuntos
Ecossistema , Pradaria , Biomassa , Biodiversidade , Reprodutibilidade dos Testes , Plantas
4.
Sci Rep ; 12(1): 10876, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760984

RESUMO

Demersal fisheries are one of the top anthropic stressors in marine environments. In the long term, some species are more vulnerable to fishery impacts than others, which can lead to permanent changes on the food web. The trophic relationships between predator and prey constitute the food web and it represents a network of the energy channels in an ecosystem. In turn, the network structure influences ecosystem diversity and stability. The first aim of this study was to describe for the first time the food web of the San Jorge Gulf (Patagonia Argentina) with high resolution, i.e. to the species level when information is available. The San Jorge Gulf was subject to intense fisheries thus our second aim is to analyse the food web structure with and without fishery to evaluate if the bottom-trawl industrial fishery altered the network structure and stability. We used several network metrics like: mean trophic level, omnivory, modularity and quasi-sign stability. We included these metrics because they are related to stability and can be evaluated using predator diets that can weight the links between predators and prey. The network presented 165 species organized in almost five trophic levels. The inclusion of a fishery node adds 69 new trophic links. All weighted and unweighted metrics showed differences between the two networks, reflecting a decrease in stability when fishery was included in the system. Thus, our results suggested a probable change of state of the system. The observed changes in species abundances since the fishery was established, could represent the state change predicted by network analysis. Our results suggests that changes in the stability of food webs can be used to evaluate the impacts of human activity on ecosystems.


Assuntos
Pesqueiros , Cadeia Alimentar , Dieta , Ecossistema , Atividades Humanas , Humanos
5.
Ambio ; 49(2): 541-556, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31301003

RESUMO

Primary production hotspots in the marine environment occur where the combination of light, turbulence, temperature and nutrients makes the proliferation of phytoplankton possible. Satellite-derived surface chlorophyll-a distributions indicate that these conditions are frequently associated with sharp water mass transitions named "marine fronts". Given the link between primary production, consumers and ecosystem functions, marine fronts could play a key role in the production of ecosystem services (ES). Using the shelf break front in the Argentine Sea as a study case, we show that the high primary production found in the front is the main ecological feature that supports the production of tangible (fisheries) and intangible (recreation, regulation of atmospheric gases) marine ES and the reason why the provision of ES in the Argentine Sea concentrates there. This information provides support to satellite chlorophyll as a good indicator of multiple marine ES. We suggest that marine fronts could be considered as marine ES hot spots.


Assuntos
Ecossistema , Pesqueiros , Fitoplâncton , Temperatura
6.
Mar Environ Res ; 146: 71-79, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30922605

RESUMO

Using C and N isotopic signatures of food web components, we evaluated the land-marine coupling through nutrient flows and the likely changes in the food web structure in tidal channels with contrasting anthropogenic nutrient inputs at a semi desert-macrotidal coastal system (northern Argentine Patagonia). The results showed an increase in the δ13C signatures of primary producers and in the δ15N signatures in all levels of the benthic food web, from primary producers to predators, with possible changes in the relative contribution of primary food sources for consumer in the tidal channel with high anthropogenic N input. This is an example on the extent of the distribution of anthropogenic N into natural systems, flowing through the food web from terrestrial origin to coastal marine components.


Assuntos
Isótopos de Carbono/análise , Eutrofização , Isótopos de Nitrogênio/análise , Animais , Argentina , Ecossistema , Monitoramento Ambiental/métodos , Cadeia Alimentar , Oceanos e Mares
7.
Ecology ; 99(6): 1411-1418, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29645089

RESUMO

Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.


Assuntos
Microbiota , Áreas Alagadas , Fungos , Humanos , Nitrogênio , Salinidade
8.
Ecology ; 96(8): 2147-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405740

RESUMO

Bottom-up and top-down effects act together to exert strong control over plant growth and reproduction, but how physical stress modifies those interactive forces remains unclear. Even though empirical evidence is scarce, theory predicts that the importance of both top-down- and bottom-up forces may decrease as physical stress increases. Here, we experimentally evaluate in the field the separate and interactive effect of salinity, nutrient availability, and crab herbivory on plant above- and belowground biomass, as well as on sexual and clonal reproduction in the salt marsh plant Spartina densiflora. Results show that the outcome of the interaction between nutrient availability and herbivory is highly context dependent, not only varying with the abiotic context (i.e., with or without increased salinity stress), but also with the dependent variable considered. Contrary to theoretical predictions, our results show that, consistently across different measured variables, salinity stress did not cancel bottom-up (i.e., nutrients) or top-down (i.e., consumers) control, but has additive effects. Our results support emerging theory by highlighting that, under many conditions, physical stress can act additively with, or even stimulate, consumer control, especially in cases where the physical stress is only experienced by basal levels of the trophic chain. Abiotic stress, as well as bottom-up and top-down factors, can affect salt marsh structure and function not only by affecting biomass production but also by having other indirect effects, such as changing patterns in plant biomass allocation and reproduction.


Assuntos
Ecossistema , Desenvolvimento Vegetal/fisiologia , Estresse Fisiológico/fisiologia , Animais , Argentina , Biomassa , Braquiúros/fisiologia , Herbivoria , Caules de Planta , Reprodução , Salinidade , Água do Mar
9.
Oecologia ; 175(1): 335-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549938

RESUMO

Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.


Assuntos
Herbivoria , Poaceae/crescimento & desenvolvimento , Áreas Alagadas , Amaranthaceae/crescimento & desenvolvimento , Animais , Argentina , Biodiversidade , Biomassa , Brassicaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
10.
Environ Manage ; 50(6): 1058-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22990683

RESUMO

Wetland loss is a frequent concern for the environmental management of rural landscapes, but poor disentanglement between climatic and land management causes frequently constrains both proper diagnoses and planning. The aim of this study is to address areal changes induced by non-climatic factors on lentic water bodies (LWB) within an agricultural basin of the Argentinean Pampas, and the human activities that might be involved. The LWB of the Mar Chiquita basin (Buenos Aires province, Argentina) were mapped using Landsat images from 1998-2008 and then corrected for precipitation variability by considering the regional hydrological status on each date. LWB areal changes were statistically and spatially analyzed in relation to land use changes, channelization of streams, and drainage of small SWB in the catchment areas. We found that 12 % of the total LWB in the basin had changed (P < 0.05) due to non-climatic causes. During the evaluated decade, 30 % of the LWB that changed size had decreased while 70 % showed steady increases in area. The number of altered LWB within watersheds lineally increased or decreased according to the proportion of grasslands replaced by sown pastures, or the proportion of sown pastures replaced by crop fields, respectively. Drainage and channelization do not appear to be related to the alteration of LWB; however some of these hydrologic modifications may predate 1998, and thus earlier effects cannot be discarded. This study shows that large-scale changes in land cover (e.g., grasslands reduction) can cause a noticeable loss of hydrologic regulation at the catchment scale within a decade.


Assuntos
Agricultura , Abastecimento de Água , Áreas Alagadas , Argentina , Drenagem , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA