Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1244632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283628

RESUMO

Introduction: Plinia cauliflora [Mart.] Kausel (Myrtaceae), popularly known as "jabuticaba," is a fruit species native to Brazil. Despite extensive widespread usage, its antiatherosclerotic properties' impact remains unknown. Thus, the present study aimed to investigate the cardioprotective effects of a preparation obtained from the fruit peels of P. cauliflora (EEPC). Methods: Male New Zealand rabbits received a 1% cholesterol-supplemented diet for 60 days. On the thirtieth day, the animals were divided into five experimental groups and received, once a day, by the oral route, the EEPC (10, 30, and 100 mg/kg), simvastatin (2.5 mg/kg), or vehicle for 30 days. At the end of the experimental period, peripheral blood and arterial branch samples were collected. The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), malondialdehyde (MDA), nitrotyrosine (NT), nitrite, interleukin 1 beta (IL-1b), interleukin 6 (IL-6), soluble inter-cellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were measured. Moreover, the catalase and superoxide dismutase levels were measured on the arterial samples. Histopathological analysis and arterial morphometry were also performed. Results and discussion: The oral administration of ESEG significantly lowered the levels of lipids in rabbits that were fed a CRD diet. This treatment also adjusted the protective system against oxidation in the arteries by decreasing the oxidation of lipids and proteins. Additionally, the levels of IL-1b, IL-6, sICAM-1, and sVCAM-1 in the bloodstream decreased significantly, and this was accompanied by a reduction of atherosclerotic lesions in all branches of the arteries. The findings suggest that EEPC may be a possible option for additional management of atherosclerosis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38026733

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is a complex condition characterized by steatosis and metabolic disturbances. Risk factors such as diabetes, cigarette smoking, and dyslipidaemia contribute to its development and progression. Effective and safe therapies for MAFLD are urgently needed. Pereskia grandifolia has shown potential as an alternative treatment, but its effectiveness against liver disease remains unexplored. This research aims to determine the hepatoprotective properties of P. grandifolia using a model of MAFLD. The study was carried out through various phases to assess the safety and efficacy of the ethanol-soluble fraction of P. grandifolia. Initially, an in vitro assay was performed to assess cell viability. This was followed by an acute toxicity test conducted in rats to determine the safety profile of the extract. Subsequently, the anti-inflammatory properties of P. grandifolia were examined in macrophages. For the MAFLD study, diabetic Wistar rats were made diabetic and exposed to a high fat diet and cigarette smoke, for 4 weeks. During the last 2 weeks, the rats were orally given either the vehicle (negative control group; C-), P. grandifolia (30, 100, and 300 mg/kg), or insulin in addition to simvastatin. A basal group of rats not exposed to these risk factors was also assessed. Blood samples were collected to measure cholesterol, triglycerides, glucose, ALT, and AST levels. Liver was assessed for lipid and oxidative markers, and liver histopathology was examined. P. grandifolia showed no signs of toxicity. It demonstrated anti-inflammatory effects by inhibiting phagocytosis and macrophage spreading. The MAFLD model induced liver abnormalities, including increased AST, ALT, disrupted lipid profile, oxidative stress, and significant hepatic damage. However, P. grandifolia effectively reversed these changes, highlighting its potential as a therapeutic agent. These findings emphasize the significance of P. grandifolia in mitigating hepatic consequences associated with various risk factors.

3.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630984

RESUMO

Natural products can be used as complements or as alternatives to synthetic drugs. Eugenia uniflora and Tropaeolum majus are natives of Brazil and have antimicrobial, anti-inflammatory, and antioxidant activities. This study aimed to develop a film-forming system (FFS) loaded with plant extracts with the potential for treating microbial infections. E. uniflora and T. majus leaf extracts were prepared and characterized, and the individual and combined antioxidant and antimicrobial activities were evaluated. The FFS was developed with different concentrations of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and analyzed for physicochemical characteristics. The combination of extracts showed a superior antioxidant effect compared to the individual extracts, justifying the use of the blend. FFS prepared with 4.5% PVA, 4.5% PVP, 7.81% E. uniflora extract, and 3.90% T. majus extract was adhesive, lacked scale formation, presented good malleability, and had a suitable pH for topical application. In addition, the viscosity at rest was satisfactory for maintaining stability; water solubility was adequate; skin permeation was low; and the antimicrobial effect was superior to that of the individual extracts. Therefore, the developed FFS is promising for the differentiated treatment of skin lesions through topical application.

4.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631088

RESUMO

Plinia cauliflora (Mart.) Kausel, popularly known as jabuticaba, possesses bioactive compounds such as flavonoids, tannins, and phenolic acids, known for their antioxidant, antibacterial, wound healing, and cardioprotective effects. Therefore, this study aimed to standardize the P. cauliflora fruit peel extraction method, maximize phenolic constituents, and evaluate their antioxidative and antimicrobial effects. Various extraction methods, including vortex extraction with and without precipitation at 25, 40, and 80 °C, and infusion extraction with and without precipitation, were performed using a completely randomized design. Extraction without precipitation (E - P) showed the highest yield (57.9%). However, the precipitated extraction (E + P) method displayed a yield of 45.9%, higher levels of phenolic derivatives, and enhanced antioxidant capacity. Major compounds, such as D-psicose, D-glucose, and citric acid, were identified through gas chromatography-mass spectrometry (GC-MS) analysis. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis identified citric acid, hexose, flavonoids, tannins, and quercetin as the major compounds in the extracts. Furthermore, the extracts exhibited inhibitory effects against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli bacteria. In conclusion, the E + P method efficiently obtained extracts with high content of bioactive compounds showing antioxidant and antimicrobial capacities with potential application as a dietary supplement.

5.
Bol. latinoam. Caribe plantas med. aromát ; 22(2): 255-267, mar. 2023. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1555677

RESUMO

Food spoilage is a widely neglected problem and the constant use of synthetic fungicides could develop resistant fungi. The objective of this study was to evaluate the chemical composition and antimicrobial activity of Tetradenia riparialeaf essential oil against foodborne disease microorganisms. Leaf essential oil was obtained by hydrodistillation and identified by gas chromatography coupled to mass spectrometry. The antimicrobial activity was studied by broth microdilution. The major compounds identified were oxygenated sesquiterpenes (43.6%): 14-hydroxy-9-epi-(E)-cariophylene (20.8%) and τ-cadinol (18.4%); followed by oxygenated diterpenes (24.6%): 6,7-dehydroroyleanone (12.6%) and 9ß, 13ß-epoxy-7-abiethene (10.6%); sesquiterpenic hydrocarbons (17.1%) and oxygenated monoterpenes (7.4%): fenchone (5.6%). The essential oil had broad antibacterial and antifungal activity, mainly against A. versicolor and P. ochrochloron with fungistatic and fungicidal activities and B. cereus, L. monocytogenes, and S. aureuswith bacteriostatic and bactericidal activities. T. riparialeaf essential oil is a potential alternative to control microorganisms-


El deterioro de los alimentos es un problema ampliamente desatendido y el uso constante de fungicidas sintéticos podría desarrollar hongos resistentes. El objetivo de este estudio fue evaluar la composición química y la actividad antimicrobiana del aceite esencial de hoja de Tetradenia riparia contra microorganismos patógenos transmitidos por los alimentos. El aceite esencial de hoja se obtuvo por hidrodestilación y se identificó mediante cromatografía de gases acoplada a espectrometría de masas. La actividad antimicrobiana estudiada fue por microdilución en caldo. Los compuestos principales del aceite esencial se identificaron como sesquiterpenos oxigenados (43,6%): 14-hidroxi-9-epi-(E)-cariofileno (20,8%) y τ-cadinol (18,4%); seguido de diterpenos oxigenados (24,6%): 6-7-deshidroroileanona (12,6%) y 9ß, 13ß-epoxi-7-abieteno (10,6%); hidrocarburos sesquiterpénicos (17,1%) y monoterpenos oxigenados (7,4%): fenchona (5,6%). Tenía amplia actividad antibacteriana y antifúngica, principalmente contra A. versicolor y P. ochrochloron con actividades fungistáticas y fungicidas, y principalmente contra B. cereus, L. monocytogenes y S. aureus con actividades bacteriostáticas y bactericidas. El aceite esencial de hoja de T. riparia es una alternativa potencial para controlar microorganismos.


Assuntos
Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Lamiaceae/química , Anti-Infecciosos/uso terapêutico
6.
Rev Bras Parasitol Vet ; 32(1): e013522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820731

RESUMO

Around the world, the main problems of livestock are caused by ectoparasites, however, commercial acaracide are toxic to the environment and detrimental to One Health. Therefore, research has increasingly focused on development of natural products as alternatives for tick control. The purpose of this study was to evaluate the larvicidal effect on Rhipicephalus (Boophilus) microplus, through use of essential oils (EOs) extracted from the leaves, flower buds and stems of Tetradenia riparia. The chemical composition of these EOs was determined through gas chromatography coupled to mass spectrometry (GC-MS). They were tested on larvae at concentrations of 100.000 to 40 µg/mL, using the larval packet test and under semi-natural conditions. The main class of compounds in the chemical composition was sesquiterpenes (both oxygenates and hydrocarbons), whereas the predominant compounds in the leaves, flower buds and stems were 14-hydroxy-9-epi-caryophyllene, T-cadinol and 6-7-dehydroroyleanone, respectively. The leaves proved to be the most effective, with highest larvicidal activity (LC99.9 = 83.53 µg/mL). When tested under semi-natural conditions, the oils obtained efficiency above 98% in all compound tests. The results indicated that these EOs were effective against R. (B.) microplus larvae in vitro and ex-situ, proving that this plant has bioactive molecules with significant larvicidal activity.


Assuntos
Acaricidas , Lamiaceae , Óleos Voláteis , Rhipicephalus , Animais , Óleos Voláteis/farmacologia , Larva , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Acaricidas/farmacologia , Folhas de Planta , Flores
7.
Biosci. j. (Online) ; 39: e39026, 2023.
Artigo em Inglês | LILACS | ID: biblio-1425189

RESUMO

Tetradenia riparia (Hochst.) Codd (Lamiaceae) is a shrub, commonly known as ginger bush or false myrrh, and several studies have shown that T. riparia exhibits a variety of biological properties. This study aimed to determine the chemical composition of T. riparia essential oil and its fractions, investigate their anticholinesterase activity, and assess their larvicidal activity against the cattle tick Rhipicephalus microplus and the mosquito Aedes aegypti. Eleven essential oil fractions were obtained by fractionation and analyzed by gas chromatography/mass spectrometry. Larvicidal activity against R. microplus and third-instar A. aegypti was assessed using a larval packet test and a larval immersion test, respectively. Anticholinesterase activity was determined by a bioautographic method. Forty-nine compounds were identified in the essential oil, of which the major classes were oxygenated sesquiterpenes (45.95%) and sesquiterpene hydrocarbons (35.20%) and the major components were isospathulenol (17.40%), ß-caryophyllene (15.61%), 14-hydroxy-9-epi-caryophyllene (10.07%), 14-hydroxy-α-muurolene (8.32%), and 9ß,13ß-epoxy-7-abietene (5.53%). Bioassays showed that T. riparia essential oil (LC50 = 1.56 µg/mL) and FR3 (LC50 = 0.30 µg/mL) were the most active against R. microplus and A. aegypti larvae, respectively. The essential oil and FR1, FR2, and FR3 exhibited acetylcholinesterase inhibitory activity. These results indicate that T. riparia essential oil and its fractions hold promise in the development of novel, environmentally safe agents for the control of R. microplus and A. aegypti larvae.


Assuntos
Carrapatos , Aedes , Lamiaceae/toxicidade , Lamiaceae/química , Larvicidas
8.
Rev. Bras. Parasitol. Vet. (Online) ; 32(1): e013522, 2023. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1416496

RESUMO

Around the world, the main problems of livestock are caused by ectoparasites, however, commercial acaracide are toxic to the environment and detrimental to One Health. Therefore, research has increasingly focused on development of natural products as alternatives for tick control. The purpose of this study was to evaluate the larvicidal effect on Rhipicephalus (Boophilus) microplus, through use of essential oils (EOs) extracted from the leaves, flower buds and stems of Tetradenia riparia. The chemical composition of these EOs was determined through gas chromatography coupled to mass spectrometry (GC-MS). They were tested on larvae at concentrations of 100.000 to 40 µg/mL, using the larval packet test and under semi-natural conditions. The main class of compounds in the chemical composition was sesquiterpenes (both oxygenates and hydrocarbons), whereas the predominant compounds in the leaves, flower buds and stems were 14-hydroxy-9-epi-caryophyllene, T-cadinol and 6-7-dehydroroyleanone, respectively. The leaves proved to be the most effective, with highest larvicidal activity (LC99.9 = 83.53 µg/mL). When tested under semi-natural conditions, the oils obtained efficiency above 98% in all compound tests. The results indicated that these EOs were effective against R. (B.) microplus larvae in vitro and ex-situ, proving that this plant has bioactive molecules with significant larvicidal activity.(AU)


Os principais problemas para a pecuária estão relacionados às ectoparasitoses, e ao fato dos carrapaticidas apresentarem elevada toxicidade ao meio ambiente e à saúde única. Surgem, então, demandas na busca por inovações e desenvolvimento de produtos naturais, como alternativas para o controle dos carrapatos. O objetivo deste trabalho foi avaliar o potencial da atividade larvicida sobre Rhipicephalus (Boophilus) microplus a partir dos óleos essenciais de Tetradenia riparia (TrOEs) extraídos das folhas, botões florais e caules. A composição química foi determinada por cromatografia gasosa acoplada à espectrometria de massa (GC/MS). Os TrOEs foram testados sobre larvas nas concentrações de 100.000 a 40 µg/mL pelo teste de pacote de larvas e em condições seminaturais. Na composição química, a classe majoritária foi os sesquiterpenos (oxigenados e hidrocarbonetos); já os compostos em destaques foram 14-hidroxy-9-epi-caryophyllene, T-cadinol e 6-7-dehidroroyleanone para folhas, botões florais e caules, respectivamente. As folhas demonstraram ser mais eficientes e com maior poder larvicida (CL99.9 = 83.53 µg/mL). Quando testado em condições seminaturais os óleos obtiveram eficiência acima de 98% em todos os compostos testados. Os resultados indicaram que os TrOEs, foram eficazes sobre as larvas de R. (B.) microplus in vitro e ex-situ, evidenciando que esta planta possui moléculas bioativas com ação larvicidas significativas.(AU)


Assuntos
Óleos Voláteis/efeitos adversos , Rhipicephalus/imunologia , Larvicidas , Acaricidas/análise , Espectrometria de Massas/métodos , Cromatografia Gasosa/métodos , Lamiaceae/química
9.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559017

RESUMO

Medicinal plants have great prominence in research into the development of new medicines. Eugenia uniflora L. (Myrtaceae) is an edible and medicinal plant with economic value in the northeast region of Brazil. Several preparations from E. uniflora leaves and its fruits are employed as a source of nutrients and bioactive compounds. In this study we evaluated the preclinical toxicology of crude extract and vaginal gel obtained from the leaves of E. uniflora (5%, 10%, and 15%) aiming to provide safety for its use in the treatment of vulvovaginitis. Both formulations were applied to the vaginal cavity for 14 days. Detailed observations of the vaginal region, including pruritus, swelling, irritation, burning, pain, and vaginal secretion, as well as the estrous cycle were evaluated. On the fifth day, blood samples were obtained from the supraorbital plexus for biochemical and hematological analyses. The animals were subsequently euthanized. All animals underwent necropsy and macroscopic examination of the vaginal mucosa and reproductive system. A histological examination was also performed. No clinically significant changes were detected during the entire experimental period. All biochemical, hematological, or histopathological parameters were within the normal range for the species. The data obtained allow us to suggest that the E. uniflora vaginal formulations are safe in this experimental model.

10.
Acta sci., Biol. sci ; 44: e56510, mar. 2022. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1368017

RESUMO

Piper regnellii (Miq.) C. DC. var. regnellii, popularly known as "pariparoba", is used for therapeutic purposes. However, the morphological similarity among Piper species can lead to misidentifications, so molecular markers have been used to validate the identification of species and their morphotypes. Among the molecular markers used in plants, the intergenic spacer region trnL-trnF has proven effective in identifying plant species. For this reason, this region was used to evaluate two morphotypes of Piper regnellii var. regnellii. Studies with the trnL-trnF region have shown this region as a good marker for establishing phylogenetic relationships, distinguishing species, and identifying new species. We concluded that the trnL-trnF sequenced region show one indel of difference between the two morphotypes. It would be interesting to analyze these two morphotypes with a more variable region than the one used here, aiming to show intraspecific differences.(AU)


Assuntos
Filogenia , Piper
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA