Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 411-427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38030866

RESUMO

Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.


Assuntos
Antibacterianos , Colistina , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Biofilmes , Percepção de Quorum , Bactérias , Testes de Sensibilidade Microbiana
3.
J Health Popul Nutr ; 42(1): 5, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691087

RESUMO

BACKGROUND: The role of screen time in promoting obesity among children has been reported in previous studies. However, the effects of different screen types and the dose-response association between screen time and obesity among children is not summarized yet. In the current meta-analysis we systematically summarized the association between obesity and screen time of different screen types in a dose-response analysis. METHODS: A systematic search from Scopus, PubMed and Embase electronic databases was performed. Studies that evaluated the association between screen time and obesity up to September 2021 were retrieved. We included 45 individual studies that were drawn from nine qualified studies into meta-analysis. RESULTS: The results of the two-class meta-analysis showed that those at the highest category of screen time were 1.2 times more likely to develop obesity [odds ratio (OR) = 1.21; confidence interval (CI) = 1.113, 1.317; I2 = 60.4%; P < 0.001). The results of subgrouping identified that setting, obesity status and age group were possible heterogeneity sources. No evidence of non-linear association between increased screen time and obesity risk among children was observed (P-nonlinearity = 0.310). CONCLUSION: In the current systematic review and meta-analysis we revealed a positive association between screen time and obesity among children without any evidence of non-linear association. Due to the cross-sectional design of included studies, we suggest further studies with longitudinal or interventional design to better elucidate the observed associations.


Assuntos
Obesidade Infantil , Criança , Humanos , Tempo de Tela , Estudos Transversais , Razão de Chances
4.
Curr Med Chem ; 30(33): 3775-3797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36424777

RESUMO

BACKGROUND: Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment can lead to different adverse effects. In this regard, it has been shown that the use of radioprotective agents may alleviate the ionizing radiation-induced toxicities. OBJECTIVE: The present study aims to review the radioprotective potentials of silymarin/silibinin in the prevention/reduction of ionizing radiation-induced adverse effects on healthy cells/tissues. METHODS: Based on PRISMA guidelines, a comprehensive and systematic search was performed for identifying relevant literature on the "potential protective role of silymarin/silibinin in the treatment of radiotherapy-induced toxicities" in the different electronic databases of Web of Science, PubMed, and Scopus up to April 2022. Four hundred and fifty-five articles were obtained and screened in accordance with the inclusion and exclusion criteria of the current study. Finally, 19 papers were included in this systematic review. RESULTS: The findings revealed that the ionizing radiation-treated groups had reduced survival rates and body weight in comparison with the control groups. It was also found that radiation can induce mild to severe adverse effects on the skin, digestive, hematologic, lymphatic, respiratory, reproductive, and urinary systems. Nevertheless, the administration of silymarin/silibinin could mitigate the ionizing radiation-induced adverse effects in most cases. This herbal agent exerts its radioprotective effects through anti-oxidant, anti-apoptosis, anti-inflammatory activities, and other mechanisms. CONCLUSION: The results of the current systematic review showed that co-treatment of silymarin/silibinin with radiotherapy alleviates the radiotherapy-induced adverse effects in healthy cells/tissues.


Assuntos
Proteção Radiológica , Silimarina , Humanos , Silimarina/farmacologia , Silimarina/uso terapêutico , Silibina , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA