Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 14: 68, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23441934

RESUMO

BACKGROUND: Proteins are the key elements on the path from genetic information to the development of life. The roles played by the different proteins are difficult to uncover experimentally as this process involves complex procedures such as genetic modifications, injection of fluorescent proteins, gene knock-out methods and others. The knowledge learned from each protein is usually annotated in databases through different methods such as the proposed by The Gene Ontology (GO) consortium. Different methods have been proposed in order to predict GO terms from primary structure information, but very few are available for large-scale functional annotation of plants, and reported success rates are much less than the reported by other non-plant predictors. This paper explores the predictability of GO annotations on proteins belonging to the Embryophyta group from a set of features extracted solely from their primary amino acid sequence. RESULTS: High predictability of several GO terms was found for Molecular Function and Cellular Component. As expected, a lower degree of predictability was found on Biological Process ontology annotations, although a few biological processes were easily predicted. Proteins related to transport and transcription were particularly well predicted from primary structure information. The most discriminant features for prediction were those related to electric charges of the amino-acid sequence and hydropathicity derived features. CONCLUSIONS: An analysis of GO-slim terms predictability in plants was carried out, in order to determine single categories or groups of functions that are most related with primary structure information. For each highly predictable GO term, the responsible features of such successfulness were identified and discussed. In addition to most published studies, focused on few categories or single ontologies, results in this paper comprise a complete landscape of GO predictability from primary structure encompassing 75 GO terms at molecular, cellular and phenotypical level. Thus, it provides a valuable guide for researchers interested on further advances in protein function prediction on Embryophyta plants.


Assuntos
Embriófitas/genética , Proteínas de Plantas/genética , Vocabulário Controlado , Sequência de Aminoácidos , Bases de Dados de Proteínas , Genes de Plantas , Anotação de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-23367372

RESUMO

Learning from imbalanced data sets presents an important challenge to the machine learning community. Traditional classification methods, seeking to minimize the overall error rate of the whole training set, do not perform well on imbalanced data since they assume a relatively balanced class distribution and put too much strength on the majority class. This is a common scenario when predicting sub-cellular locations of proteins since proteins belonging to certain specific locations are naturally more abundant or have been more extensively studied. In this work, a new method to learn from imbalanced data, called SwarmBoost, is proposed in order to reduce overlapping and noise of imbalanced datasets and improve prediction performances. The method combines oversampling, subsampling based on particle swarm optimization and ensemble methods. Our results show that SwarmBoost equals and in several cases outperforms other common boosting algorithms like DataBoost-Im and AdaBoost, constituting a useful tool for improving sub-cellular location predictions.


Assuntos
Algoritmos , Proteínas/metabolismo , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA