Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 36(3): 220-226, Jul-Sep/2014. graf
Artigo em Inglês | LILACS | ID: lil-718443

RESUMO

Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent. .


Assuntos
Animais , Masculino , Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fluvoxamina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Antidepressivos/administração & dosagem , Encéfalo/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Creatina Quinase/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transporte de Elétrons/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Ratos Wistar
2.
Braz J Psychiatry ; 36(3): 220-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676049

RESUMO

OBJECTIVE: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. METHODS: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. RESULTS: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. CONCLUSIONS: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.


Assuntos
Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fluvoxamina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Animais , Antidepressivos/administração & dosagem , Encéfalo/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Creatina Quinase/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transporte de Elétrons/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Masculino , Ratos Wistar
3.
Mol Neurobiol ; 49(2): 877-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24126971

RESUMO

Fenproporex (Fen) is converted in vivo into amphetamine, which is used to induce mania-like behaviors in animals. In the present study, we intend to present a new animal model of mania. In order to prove through face, construct, and predictive validities, we evaluated behavioral parameters (locomotor activity, stereotypy activity, and fecal boli amount) and brain energy metabolism (enzymes citrate synthase; malate dehydrogenase; succinate dehydrogenase; complexes I, II, II-III, and IV of the mitochondrial respiratory chain; and creatine kinase) in rats submitted to acute and chronic administration of fenproporex, treated with lithium (Li) and valproate (VPA). The administration of Fen increased locomotor activity and decreased the activity of Krebs cycle enzymes, mitochondrial respiratory chain complexes, and creatine kinase, in most brain structures evaluated. In addition, treatment with mood stabilizers prevented and reversed this effect. Our results are consistent with the literature that demonstrates behavioral changes and mitochondrial dysfunction caused by psychostimulants. These findings suggest that chronic administration of Fen may be a potential animal model of mania.


Assuntos
Anfetaminas/farmacologia , Antimaníacos/farmacologia , Transtorno Bipolar/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Anfetaminas/uso terapêutico , Animais , Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Lítio/farmacologia , Lítio/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
4.
Mol Neurobiol ; 49(2): 734-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24091827

RESUMO

Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Encéfalo/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/biossíntese , Tirosina/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
5.
Mol Cell Biochem ; 380(1-2): 171-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636618

RESUMO

Obesity is a chronic and multifactorial disease, whose prevalence is increasing in many countries. Pharmaceutical strategies for the treatment of obesity include drugs that regulate food intake, thermogenesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine, which is associated with neurotoxicity. In this context, the present study evaluated DNA damage parameters in the peripheral blood of young and adult rats submitted to an acute administration and chronic administration of fenproporex. In the acute administration, both young and adult rats received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or vehicle. In the chronic administration, both young and adult rats received one daily injection of fenproporex (6.25, 12.5, or 25 mg/kg i.p.) or Tween for 14 days. 2 h after the last injection, the rats were killed by decapitation and their peripheral blood removed for evaluation of DNA damage parameters by alkaline comet assay. Our study showed that acute administration of fenproporex in young and adult rats presented higher levels of damage index and frequency in the DNA. However, chronic administration of fenproporex in young and adult rats did not alter the levels of DNA damage in both parameters of comet assay. The present findings showed that acute administration of fenproporex promoted damage in DNA, in both young and adult rats. Our results are consistent with other reports which showed that other amphetamine-derived drugs also caused DNA damage. We suggest that the activation of an efficient DNA repair mechanism may occur after chronic exposition to fenproporex. Our results are consistent with other reports that showed some amphetamine-derived drugs also caused DNA damage.


Assuntos
Anfetaminas/toxicidade , Dano ao DNA , Fatores Etários , Anfetaminas/administração & dosagem , Animais , Ensaio Cometa , DNA/sangue , DNA/genética , Injeções Intraperitoneais , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
6.
Neurochem Res ; 38(8): 1742-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23690230

RESUMO

Most inborn errors of tyrosine catabolism produce hypertyrosinemia. Neurological manifestations are variable and some patients are developmentally normal, while others show different degrees of developmental retardation. Considering that current data do not eliminate the possibility that elevated levels of tyrosine and/or its derivatives may have noxious effects on central nervous system development in some patients, the present study evaluated nerve growth factor (NGF) levels in hippocampus, striatum and posterior cortex of young rats. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal administration of L-tyrosine (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); the rats were killed 12 h after the last injection. NGF levels were then evaluated. Our findings showed that acute administration of L-tyrosine decreased NGF levels in striatum of 10-day-old rats. In the 30-day-old rats, NGF levels were decreased in hippocampus and posterior cortex. On the other hand, chronic administration of L-tyrosine increased NGF levels in posterior cortex. Decreased NGF may impair growth, differentiation, survival and maintenance of neurons.


Assuntos
Encéfalo/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Tirosina/farmacologia , Animais , Encéfalo/metabolismo , Masculino , Ratos , Ratos Wistar , Tirosina/administração & dosagem
7.
Mol Neurobiol ; 48(3): 581-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23559405

RESUMO

Maple syrup urine disease (MSUD) is a neurometabolic disorder caused by deficiency of the activity of the mitochondrial enzyme complex branched-chain α-keto acid dehydrogenase leading to accumulation of the branched-chain amino acids (BCAA) and their corresponding branched-chain α-keto acids. In this study, we examined the effects of acute and chronic administration of BCAA on protein levels and mRNA expression of nerve growth factor (NGF) considering that patients with MSUD present neurological dysfunction and cognitive impairment. Considering previous observations, it is suggested that oxidative stress may be involved in the pathophysiology of the neurological dysfunction of MSUD. We also investigated the influence of antioxidant treatment (N-acetylcysteine and deferoxamine) in order to verify the influence of oxidative stress in the modulation of NGF levels. Our results demonstrated decreased protein levels of NGF in the hippocampus after acute and chronic administration of BCAA. In addition, we showed a significant decrease in the expression of ngf in the hippocampus only following acute administration in 10-day-old rats. Interestingly, antioxidant treatment was able to prevent the decrease in NGF levels by increasing ngf expression. In conclusion, the results suggest that BCAA is involved in the regulation of NGF in the developing rat. Thus, it is possible that alteration of neurotrophin levels during brain maturation could be of pivotal importance in the impairment of cognition provoked by BCAA. Moreover, the decrease in NGF levels was prevented by antioxidant treatment, reinforcing that the hypothesis of oxidative stress can be an important pathophysiological mechanism underlying the brain damage observed in MSUD.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fator de Crescimento Neural/metabolismo , Animais , Antioxidantes/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Fator de Crescimento Neural/genética , Ratos , Ratos Wistar
8.
Neurotox Res ; 24(2): 251-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23423652

RESUMO

Studies have shown a relationship between energy metabolism and methylphenidate (MPH); however, there are no studies evaluating the effects of MPH in Krebs cycle. So, we investigated if MPH treatment could alter the activity of citrate synthase (CS), malate dehydrogenase (MD), and isocitrate dehydrogenase (ID) in the brain of young and adult Wistar rats. Our results showed that MPH (2 and 10 mg/kg) reduced CS in the striatum and prefrontal cortex (PF), with MPH at all doses in the cerebellum and hippocampus after chronic treatment in young rats. In adult rats the CS was reduced in the cerebellum after acute treatment with MPH at all doses, and after chronic treatment in the PF and cerebellum with MPH (10 mg/kg), and in the hippocampus with MPH (2 and 10 mg/kg). The ID decreased in the hippocampus and striatum with MPH (2 and 10 mg/kg), and in the cortex (10 mg/kg) after acute treatment in young rats. In adult rats acute treatment with MPH (2 and 10 mg/kg) reduced ID in the cerebellum, and with MPH (10 mg/kg) in the cortex; chronic treatment with MPH (10 mg/kg) decreased ID in the PF; with MPH (2 and 10 mg/kg) in the cerebellum, and with MPH at all doses in the hippocampus. The MD did not alter. In conclusion, our results suggest that MPH can alter enzymes of Krebs cycle in brain areas involved with circuits related with attention deficit hyperactivity disorder; however, such effects depend on age of animal and treatment regime.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metilfenidato/toxicidade , Fatores Etários , Animais , Ciclo do Ácido Cítrico/fisiologia , Ratos , Ratos Wistar
9.
Acta Neuropsychiatr ; 25(2): 95-100, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25287310

RESUMO

BACKGROUND: Bacterial meningitis is an infection of the central nervous system characterised by strong inflammatory response. The brain is highly dependent on ATP, and the cell energy is obtained through oxidative phosphorylation, a process which requires the action of various respiratory enzyme complexes and creatine kinase (CK) as an effective buffering system of cellular ATP levels in tissues that consume high energy. OBJECTIVES: Evaluate the activities of mitochondrial respiratory chain complexes I, II, III, IV and CK activity in hippocampus and cortex of the Wistar rat submitted to meningitis by Klebsiella pneumoniae. METHODS: Adult Wistar rats received either 10 µl of sterile saline as a placebo or an equivalent volume of K. pneumoniae suspension. The animals were killed in different times at 6, 12, 24 and 48 h after meningitis induction. Another group was treated with antibiotic, starting at 16 h and continuing daily until their decapitation at 24 and 48 h after induction. RESULTS: In the hippocampus, the meningitis group without antibiotic treatment, the complex I was increased at 24 and 48 h, complex II was increased at 48 h, complex III was inhibited at 6, 12, 24 and 48 h and in complex IV all groups with or without antibiotic treatment were inhibited after meningitis induction, in the cortex there was no alteration. Discussion Although descriptive, our results show that antibiotic prevented in part the changes of the mitochondrial respiratory chain. The meningitis model could be a good research tool to study the biological mechanisms involved in the pathophysiology of the K. pneumoniae meningitis.

10.
Behav Brain Res ; 233(2): 526-35, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22659397

RESUMO

The present study was aimed at investigating the behavioral and molecular effects of tianeptine. To this aim, Wistar rats were treated with tianeptine (5, 10 and 15 mg/kg) or imipramine (30 mg/kg) acutely and chronically. The results showed that both treatments reduced the immobility time. The BDNF levels were increased in the prefrontal cortex with tianeptine and decreased in the nucleus accumbens after acute treatment; in chronic treatment, BDNF levels were increased in the prefrontal and hippocampus with tianeptine. Acute treatment decreased the citrate synthase activity in the prefrontal cortex with tianeptine, and increased it in the amygdala with imipramine; chronic treatment increased the citrate synthase in the hippocampus with tianeptine. The creatine kinase was increased in the prefrontal cortex with tianeptine and in the amygdala with imipramine after acute treatment; chronic treatment increased the creatine kinase activity in the hippocampus with imipramine and tianeptine. The complex I activity was decreased in the prefrontal cortex with imipramine and increased in the hippocampus with tianeptine. The other complexes were increased with imipramine and tianeptine at all doses, but were related to the treatment given and the brain area studied. Chronic treatment increased the malate dehydrogenase activity in the amygdala with tianeptine. Acute treatment decreased the succinate activity in the prefrontal cortex, hippocampus and amygdala with tianeptine; chronic treatment increased the succinate activity in the hippocampus with tianeptine at all doses. In conclusion, tianeptine exerted antidepressant-like behavior which can be attributed to its effects on pathways related to depression, such as BDNF and metabolism energy.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Tiazepinas/farmacologia , Análise de Variância , Animais , Citrato (si)-Sintase , Creatina Quinase , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Imipramina/farmacologia , Masculino , Ratos , Ratos Wistar , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA