Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(48): 12761-12766, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29127217

RESUMO

Animal pollination mediates both reproduction and gene flow for the majority of plant species across the globe. However, past functional studies have focused largely on seed production; although useful, this focus on seed set does not provide information regarding species-specific contributions to pollen-mediated gene flow. Here we quantify pollen dispersal for individual pollinator species across more than 690 ha of tropical forest. Specifically, we examine visitation, seed production, and pollen-dispersal ability for the entire pollinator community of a common tropical tree using a series of individual-based pollinator-exclusion experiments followed by molecular-based fractional paternity analyses. We investigate the effects of pollinator body size, plant size (as a proxy of floral display), local plant density, and local plant kinship on seed production and pollen-dispersal distance. Our results show that while large-bodied pollinators set more seeds per visit, small-bodied bees visited flowers more frequently and were responsible for more than 49% of all long-distance (beyond 1 km) pollen-dispersal events. Thus, despite their size, small-bodied bees play a critical role in facilitating long-distance pollen-mediated gene flow. We also found that both plant size and local plant kinship negatively impact pollen dispersal and seed production. By incorporating genetic and trait-based data into the quantification of pollination services, we highlight the diversity in ecological function mediated by pollinators, the influential role that plant and population attributes play in driving service provision, and the unexpected importance of small-bodied pollinators in the recruitment of plant genetic diversity.


Assuntos
Abelhas/fisiologia , Flores/fisiologia , Fluxo Gênico , Variação Genética , Polinização/genética , Árvores/genética , Animais , Abelhas/classificação , Tamanho Corporal , Florestas , Panamá , Dispersão Vegetal/fisiologia , Pólen/genética , Sementes/genética , Especificidade da Espécie , Árvores/classificação , Clima Tropical
2.
Mol Ecol ; 25(21): 5345-5358, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662098

RESUMO

Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability.


Assuntos
Criação de Abelhas , Abelhas/genética , Fluxo Gênico , Genética Populacional , Animais , Conservação dos Recursos Naturais , Ecossistema , Geografia , Funções Verossimilhança , Clima Tropical
3.
PLoS One ; 11(6): e0156694, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280872

RESUMO

The regeneration of disturbed forest is an essential part of tropical forest ecology, both with respect to natural disturbance regimes and large-scale human-mediated logging, grazing, and agriculture. Pioneer tree species are critical for facilitating the transition from deforested land to secondary forest because they stabilize terrain and enhance connectivity between forest fragments by increasing matrix permeability and initiating disperser community assembly. Despite the ecological importance of early successional species, little is known about their ability to maintain gene flow across deforested landscapes. Utilizing highly polymorphic microsatellite markers, we examined patterns of genetic diversity and differentiation for the pioneer understory tree Miconia affinis across the Isthmus of Panama. Furthermore, we investigated the impact of geographic distance, forest cover, and elevation on genetic differentiation among populations using circuit theory and regression modeling within a landscape genetics framework. We report marked differences in historical and contemporary migration rates and moderately high levels of genetic differentiation in M. affinis populations across the Isthmus of Panama. Genetic differentiation increased significantly with elevation and geographic distance among populations; however, we did not find that forest cover enhanced or reduced genetic differentiation in the study region. Overall, our results reveal strong dispersal for M. affinis across human-altered landscapes, highlighting the potential use of this species for reforestation in tropical regions. Additionally, this study demonstrates the importance of considering topography when designing programs aimed at conserving genetic diversity within degraded tropical landscapes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Deriva Genética , Variação Genética/genética , Árvores/genética , Fluxo Gênico , Repetições de Microssatélites/genética , Panamá , Clima Tropical
4.
Ann Bot ; 117(2): 319-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602288

RESUMO

BACKGROUND AND AIMS: Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. METHODS: We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. KEY RESULTS: Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. CONCLUSIONS: This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees.


Assuntos
Magnoliopsida/fisiologia , Reprodução/fisiologia , Teorema de Bayes , Ecossistema , Genética Populacional , Magnoliopsida/anatomia & histologia , Repetições de Microssatélites , Panamá , Sementes/genética , Sementes/fisiologia , Árvores , Clima Tropical
5.
Proc Natl Acad Sci U S A ; 107(31): 13760-4, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20660738

RESUMO

Coffee farms are often embedded within a mosaic of agriculture and forest fragments in the world's most biologically diverse tropical regions. Although shade coffee farms can potentially support native pollinator communities, the degree to which these pollinators facilitate gene flow for native trees is unknown. We examined the role of native bees as vectors of gene flow for a reproductively specialized native tree, Miconia affinis, in a shade coffee and remnant forest landscape mosaic. We demonstrate extensive cross-habitat gene flow by native bees, with pollination events spanning more than 1,800 m. Pollen was carried twice as far within shade coffee habitat as in nearby forest, and trees growing within shade coffee farms received pollen from a far greater number of sires than trees within remnant forest. The study shows that shade coffee habitats support specialized native pollinators that enhance the fecundity and genetic diversity of remnant native trees.


Assuntos
Abelhas/fisiologia , Café/fisiologia , Melastomataceae/fisiologia , Pólen , Animais , Comportamento Animal , Variação Genética , Melastomataceae/genética , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA