Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Anim. Reprod. ; 9(3): 297-304, 2012.
Artigo em Inglês | VETINDEX | ID: vti-8341

RESUMO

Interferon tau (IFNT), the pregnancy recognition signal from trophectoderm cells of ruminant conceptuses abrogates the uterine luteolytic mechanism to ensure maintenance of functional corpora lutea for production of progesterone (P4). IFNT acts in concert with P4 to induce expression of genes for transport and/or secretion of histotroph that includes nutrients such as glucose and arginine that activate the mechanistic target of rapamycin (MTOR) nutrient sensing cell signaling pathway to stimulate proliferation, migration, differentiation and translation of mRNAs essential for growth and development of the conceptus. Arginine, leucine, glutamine and glucose increase in the uterine lumen during the peri-implantation period of pregnancy due to increased expression of their transporters by uterine luminal epithelium (LE) and superficial glandular epithelium (sGE) in response to P4 and IFNT. In day 16 ovine conceptus explant cultures, arginine increases GTP cyclohydrolase 1 mRNA, and IFNT, while arginine and glucose increase ornithine decarboxylase, nitric oxide synthase 2, and GCH1. Arginine can be metabolized to nitric oxide (NO) and polyamines which stimulate proliferation of ovine trophectoderm (oTr) cells. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) in uterine histotroph increases focal adhesion assembly as a prerequisite for adhesion and migration of oTr cells through activation and cross-talk between MTOR, MAPK, and myosin II motor pathways. Glucose, arginine, leucine and glutamine stimulate MTOR signaling, proliferation and mRNA translation by oTr cells. Further, glucose and fructose were equivalent in stimulating proliferation and synthesis of hyaluronic acid via the hexosamine pathway in oTr and pig Tr cells. These mechanisms allow select nutrients and SPP1 to act coordinately to affect synthesis of proteins involved in cell signaling affecting conceptus growth, development, and survival during the peri-implantation period of pregnancy.(AU)


Assuntos
Animais , Nutrientes/análise , Prenhez/fisiologia , Aminoácidos/análise , Glucose/análise , Ruminantes/classificação
2.
Anim. Reprod. (Online) ; 9(3): 297-304, 2012.
Artigo em Inglês | VETINDEX | ID: biblio-1461705

RESUMO

Interferon tau (IFNT), the pregnancy recognition signal from trophectoderm cells of ruminant conceptuses abrogates the uterine luteolytic mechanism to ensure maintenance of functional corpora lutea for production of progesterone (P4). IFNT acts in concert with P4 to induce expression of genes for transport and/or secretion of histotroph that includes nutrients such as glucose and arginine that activate the mechanistic target of rapamycin (MTOR) nutrient sensing cell signaling pathway to stimulate proliferation, migration, differentiation and translation of mRNAs essential for growth and development of the conceptus. Arginine, leucine, glutamine and glucose increase in the uterine lumen during the peri-implantation period of pregnancy due to increased expression of their transporters by uterine luminal epithelium (LE) and superficial glandular epithelium (sGE) in response to P4 and IFNT. In day 16 ovine conceptus explant cultures, arginine increases GTP cyclohydrolase 1 mRNA, and IFNT, while arginine and glucose increase ornithine decarboxylase, nitric oxide synthase 2, and GCH1. Arginine can be metabolized to nitric oxide (NO) and polyamines which stimulate proliferation of ovine trophectoderm (oTr) cells. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) in uterine histotroph increases focal adhesion assembly as a prerequisite for adhesion and migration of oTr cells through activation and cross-talk between MTOR, MAPK, and myosin II motor pathways. Glucose, arginine, leucine and glutamine stimulate MTOR signaling, proliferation and mRNA translation by oTr cells. Further, glucose and fructose were equivalent in stimulating proliferation and synthesis of hyaluronic acid via the hexosamine pathway in oTr and pig Tr cells. These mechanisms allow select nutrients and SPP1 to act coordinately to affect synthesis of proteins involved in cell signaling affecting conceptus growth, development, and survival during the peri-implantation period of pregnancy.


Assuntos
Animais , Aminoácidos/análise , Glucose/análise , Nutrientes/análise , Prenhez/fisiologia , Ruminantes/classificação
3.
Placenta ; 32 Suppl 2: S81-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21227506

RESUMO

Workshops are an important part of the IFPA annual meeting. At IFPA Meeting 2010 there were twelve themed workshops, six of which are summarized in this report. 1. The immunology workshop focused on normal and pathological functions of the maternal immune system in pregnancy. 2. The transport workshop dealt with regulation of ion and water transport across the syncytiotrophoblast of human placenta. 3. The epigenetics workshop covered DNA methylation and its potential role in regulating gene expression in placental development and disease. 4. The vascular reactivity workshop concentrated on methodological approaches used to study placental vascular function. 5. The workshop on epitheliochorial placentation covered current advances from in vivo and in vitro studies of different domestic species. 6. The proteomics workshop focused on a variety of techniques and procedures necessary for proteomic analysis and how they may be implemented for placental research.


Assuntos
Feto/fisiologia , Placenta/fisiologia , Trofoblastos/fisiologia , Animais , Educação , Epigênese Genética/fisiologia , Feminino , Feto/irrigação sanguínea , Feto/citologia , Feto/imunologia , Humanos , Transporte de Íons/fisiologia , Troca Materno-Fetal/fisiologia , Placenta/irrigação sanguínea , Placenta/citologia , Placenta/imunologia , Placentação/fisiologia , Gravidez , Proteômica/métodos , Trofoblastos/citologia , Trofoblastos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA