Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 217: 141-156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552927

RESUMO

Current studies indicate that pathological modifications of tau are associated with mitochondrial dysfunction, synaptic failure, and cognitive decline in neurological disorders and aging. We previously showed that caspase-3 cleaved tau, a relevant tau form in Alzheimer's disease (AD), affects mitochondrial bioenergetics, dynamics and synaptic plasticity by the opening of mitochondrial permeability transition pore (mPTP). Also, genetic ablation of tau promotes mitochondrial function boost and increased cognitive capacities in aging mice. However, the mechanisms and relevance of these alterations for the cognitive and mitochondrial abnormalities during aging, which is the primary risk factor for AD, has not been explored. Therefore, in this study we used aging C57BL/6 mice (2-15 and 28-month-old) to evaluate hippocampus-dependent cognitive performance and mitochondrial function. Behavioral tests revealed that aged mice (15 and 28-month-old) showed a reduced cognitive performance compared to young mice (2 month). Concomitantly, isolated hippocampal mitochondria of aged mice showed a significant decrease in bioenergetic-related functions including increases in reactive oxygen species (ROS), mitochondrial depolarization, ATP decreases, and calcium handling defects. Importantly, full-length and caspase-3 cleaved tau were preferentially present in mitochondrial fractions of 15 and 28-month-old mice. Also, aged mice (15 and 28-month-old) showed an increase in cyclophilin D (CypD), the principal regulator of mPTP opening, and a decrease in Opa-1 mitochondrial localization, indicating a possible defect in mitochondrial dynamics. Importantly, we corroborated these findings in immortalized cortical neurons expressing mitochondrial targeted full-length (GFP-T4-OMP25) and caspase-3 cleaved tau (GFP-T4C3-OMP25) which resulted in increased ROS levels and mitochondrial fragmentation, along with a decrease in Opa-1 protein expression. These results suggest that tau associates with mitochondria and this binding increases during aging. This connection may contribute to defects in mitochondrial bioenergetics and dynamics which later may conduce to cognitive decline present during aging.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/patologia , Envelhecimento/genética , Mitocôndrias/metabolismo , Hipocampo/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166898, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774936

RESUMO

Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.


Assuntos
Doença de Alzheimer , Poro de Transição de Permeabilidade Mitocondrial , Animais , Camundongos , Doença de Alzheimer/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
3.
Prog Neurobiol ; 175: 54-76, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605723

RESUMO

Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic structure and function, and neuronal signaling pathways. Although tau plays important physiological roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a thorough knowledge of the physiological functions of tau and its post-translational modifications under normal conditions are necessary to provide the foundation for understanding its role in pathological settings. In this review, we will focus on human tau, summarizing tau structure and organization, as well as its posttranslational modifications associated with physiological processes. We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss newly elucidated tau functions in a physiological context.


Assuntos
Encéfalo , Proteínas tau/fisiologia , Humanos , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA