Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4453, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396007

RESUMO

Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 µg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.


Assuntos
Antioxidantes , Coffea , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Cafeína/farmacologia , Cafeína/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia , Antibacterianos/farmacologia , Coffea/química
2.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257361

RESUMO

Aquatic environments face contamination by pharmaceuticals, prompting concerns due to their toxicity even at low concentrations. To combat this, we developed an ecologically sustainable biosurfactant derived from a microorganism and integrated it into bacterial cellulose (BC). This study aimed to evaluate BC's efficacy, with and without the biosurfactant, as a sorbent for paracetamol and 17α-ethinylestradiol (EE2) in water. We cultivated BC membranes using Gluconacetobacter xylinus ATCC 53582 and synthesized the biosurfactant through pre-inoculation of Bacillus subtilis in a synthetic medium. Subsequently, BC membranes were immersed in the biosurfactant solution for incorporation. Experiments were conducted using contaminated water, analyzing paracetamol concentrations via spectrophotometry and EE2 levels through high-performance liquid chromatography. Results indicated BC's superior adsorption for EE2 over paracetamol. Incorporating the biosurfactant reduced hormone adsorption but enhanced paracetamol sorption. Notably, original and freeze-dried BC exhibited better adsorption efficacy than biosurfactant-infused BC. In conclusion, BC showed promise in mitigating EE2 contamination, suggesting its potential for environmental remediation. Future research could focus on optimizing biosurfactant concentrations to enhance sorption capabilities without compromising BC's inherent effectiveness.


Assuntos
Acetaminofen , Celulose , Adsorção , Água , Preparações Farmacêuticas
3.
Birth Defects Res ; 115(15): 1424-1437, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421350

RESUMO

INTRODUCTION: Lead (Pb) is a toxic pollutant, which can affect different tissues of the human body. The use of natural elements, as medicinal mushroom can reduce the toxic effects of Pb. OBJECTIVE: We evaluated, through preclinical tests, the oral co exposures to mushroom Agaricus bisporus (Ab) by gavage and Pb in drinking water, and the capability of Ab be a protective agent for both pregnant rats and their fetuses. METHODS: Female Wistar rats were divided into four groups (n = 5/group): Group I-Control; Group II-Ab 100 mg/kg; Group III-Pb 100 mg/L; Group IV-Ab +Pb -100 mg/kg +100 mg/L. Exposure was performed until the 19th day of gestation. On the 20th day, pregnant rats were euthanized, and the outcomes evaluated were weight gain; hematological profile; biochemical markers; oxidative stress markers; reproductive capacity; and embryo fetal development. RESULTS: The characterization of mushrooms reveals them to be a valuable source of nutrients. However, Pb ingestion resulted in reduced weight gain and negative impacts on hematological and biochemical parameters. Fortunately, co administration of mushrooms helped to mitigate these negative effects and promote recovery. The mushroom also showed antioxidant activity, improving parameters of oxidative stress. In addition, Ab partially recovered the damage in fetal morphology and bone parameters. CONCLUSION: Our findings indicated that the co administration of Ab improved the toxicity caused by Pb, and the mushroom could be used as a natural alternative as a protective/chelator agent.


Assuntos
Agaricus , Chumbo , Gravidez , Humanos , Ratos , Feminino , Animais , Chumbo/toxicidade , Ratos Wistar , Agaricus/química , Aumento de Peso
4.
Colloids Surf B Biointerfaces ; 222: 113043, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455361

RESUMO

Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.


Assuntos
Nanopartículas , Nanotecnologia , Humanos , Sistemas de Liberação de Medicamentos , Nanomedicina , Preparações Farmacêuticas/química , Proteínas , Substâncias Macromoleculares , Nanopartículas/química
5.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500434

RESUMO

In recent decades, there has been an increase in environmental problems caused by cosmetic products derived from toxic substances. Based on this issue, researchers and developers of new beauty cosmetics are looking for new natural alternatives that work well for the consumer and have biodegradable characteristics. This systematic review highlights the major publications of bacterial cellulose used strictly for cosmetics in the last 10 years. Bacterial cellulose is a natural product with great cosmetic properties and low cost that has shown excellent results. This study aimed at collecting rigorous information on bacterial cellulose in the cosmetic field in the last decade to produce a systematized review. A comprehensive search was conducted with selected descriptors involving the topic of "bacterial cellulose", "cosmetics", "clean beauty", and "skin mask". Seventy studies were found, which went through exclusion criteria that selected only those related to the topic that was searched. In the 12 remaining studies that met the criteria, bacterial cellulose showed conditions for use as a mask-forming product for facial care. The increase in the number of publications concerning bacterial cellulose in cosmetics in the last ten years is a strong indicator that this is a growing area for both research and the industry.


Assuntos
Celulose , Cosméticos , Cosméticos/toxicidade , Bactérias
6.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014289

RESUMO

Rosmarinus officinalis belongs to the Lamiaceae family, and its constituents show antioxidant, anti-inflammatory, antidepressant, antinociceptive, and antibacterial properties. The aim of this study was to develop a topical formulation with R. officinalis extract that had antimicrobial and antioxidant activity. Maceration, infusion, Soxhlet, and ultrasound were used to produce rosemary extracts, which were submitted to antioxidant, compound quantification, cell viability, and antimicrobial assays. Infusion and Soxhlet showed better results in the DPPH assay. During compound quantification, infusion showed promising metabolite extraction in phenolic compounds and tannins, although maceration was able to extract more flavonoids. The infusion and ultrasound extracts affected more strains of skin bacteria in the disk diffusion assays. In the minimum inhibitory concentration assay, the infusion extract showed results against S. aureus, S. oralis, and P. aeruginosa, while ultrasound showed effects against those three bacteria and E. coli. The infusion extract was chosen to be incorporated into a green emulsion. The infusion extract promoted lower spreadability and appropriated the texture, and the blank formulation showed high levels of acceptance among the volunteers. According to the results, the rosemary extract showed promising antioxidant and antimicrobial activity, and the developed formulations containing this extract were stable for over 90 days and had acceptable characteristics, suggesting its potential use as a phytocosmetic. This paper reports the first attempt to produce an oil-in-water emulsion using only natural excipients and rosemary extract, which is a promising novelty, as similar products cannot be found on the market or in the scientific literature.


Assuntos
Anti-Infecciosos , Rosmarinus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Emulsões , Escherichia coli , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rosmarinus/química , Staphylococcus aureus
7.
Antioxidants (Basel) ; 11(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739932

RESUMO

The consumption of functional foods, such as mushrooms, apparently influences Gestational Diabetes Mellitus (GDM), and brings benefits to maternal-fetal health. Ganoderma lucidum contains a variety of bioactive compounds, such as polysaccharides, proteins and polyphenols that are able to control blood glucose and be used in anti-cancer therapy. We aimed to evaluate the effects of the consumption of Ganoderma lucidum (Gl) on maternal-fetal outcomes in streptozotocin-induced GDM (GDM-STZ). Pregnant rats were exposed to Gl (100 mg/kg/day) before and after the induction of GDM-STZ (single dose 40 mg/kg) on the eighth pregnancy day. Biochemical and oxidative stress parameters, reproductive performance and morphometry of fetuses were assessed. Gl reduced the glycemic response in the oral glucose tolerance test. Moreover, Gl decreased AST and ALT activities. GDM increased lipid peroxidation, which was reverted by Gl. Catalase and glutathione peroxidase activities were decreased in GDM and the administered Gl after the fetus implantation increased catalase activity. Measurements of the fetal head, thorax, craniocaudal and tail showed greater values in fetuses from rats exposed to Gl compared to GDM. Ganoderma lucidum has an encouraging nutritional and medicinal potential against GDM, since it modifies glucose metabolism, reduces lipid peroxidation, and has protective effects in fetuses born from GDM dams.

8.
Sci Rep ; 12(1): 6507, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443767

RESUMO

The agricultural residues are ecofriendly alternatives for removing contaminants from water. In this way, a novel biochar from the spent mushroom substrate (SMS) was produced and assessed to remove endocrine disruptor from water in batch and fixed-bed method. SMS were dried, ground, and pyrolyzed. Pyrolysis was carried out in three different conditions at 250 and 450 °C, with a residence time of 1 h, and at 600 °C with a residence time of 20 min. The biochar was firstly tested in a pilot batch with 17α-ethinylestradiol (EE2) and progesterone. The residual concentrations of the endocrine disruptors were determined by HPLC. The biochar obtained at 600 °C showed the best removal efficiency results. Then, adsorption parameters (isotherm and kinetics), fixed bed tests and biochar characterization were carried out. The Langmuir model fits better to progesterone while the Freundlich model fits better to EE2. The Langmuir model isotherm indicated a maximum adsorption capacity of 232.64 mg progesterone/g biochar, and 138.98 mg EE2/g biochar. Images from scanning electrons microscopy showed that the 600 °C biochar presented higher porosity than others. In the fixed bed test the removal capacity was more than 80% for both endocrine disruptors. Thus, the biochar showed a good and viable option for removal of contaminants, such as hormones.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Disruptores Endócrinos/análise , Cinética , Progesterona , Água , Poluentes Químicos da Água/análise
9.
Sci Rep ; 11(1): 23944, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907234

RESUMO

Nanocomplexes systems made up natural poylymers have pharmacotechnical advantages such as increase of water solubility and a decrease of drugs toxicity. Amphotericin B (AmB) is a drug apply as anti-leishmanial and anti-fungal, however it has low water solubility and high toxicity, limiting its therapeutic application. With this in mind, the present study aimed to produce nanocomplexes composed by alginate (Alg), a natural polymer, with AmB covered by nanocrystals from bacterial cellulose (CNC). For this reason, the nanocomplexes were produced utilizing sodium alginate, amphotericin B in a borate buffer (pH 11.0). The CNC was obtained by enzymatic hydrolysis of the bacterial cellulose. To CNC cover the nanocomplexes 1 ml of the nanocomplexes was added into 1 ml of 0.01% CNC suspension. The results showed an ionic adsorption of the CNC into the Alg-AmB nanocomplexes surface. This phenomena was confirmed by an increase in the particle size and PDI decrease. Besides, nanocomplexes samples covered by CNC showed uniformity. The amorphous inclusion of AmB complex into the polysaccharide chain network in both formulations. AmB in the nanocomplexes was in supper-aggregated form and showed good biocompatibility, being significantly less cytotoxic in vitro against kidney cells and significantly less hemolytic compared to the free-drug. The in vitro toxicity results indicated the Alg-AmB nanocomplexes can be considered a non-toxic alternative to improve the AmB therapeutic effect. All process to obtain nanocomplexes and it coat was conduce without organic solvents, can be considered a green process, and allowed to obtain water soluble particles. Furthermore, CNC covering the nanocomplexes brought additional protection to the system can contribut advancement in the pharmaceutical.


Assuntos
Anfotericina B , Celulose , Nanopartículas , Alginatos/efeitos adversos , Alginatos/química , Alginatos/farmacologia , Anfotericina B/efeitos adversos , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Celulose/efeitos adversos , Celulose/química , Celulose/farmacologia , Cães , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/uso terapêutico
10.
Int J Med Mushrooms ; 23(9): 15-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591395

RESUMO

Through preclinical tests, this study evaluated the effects of Agaricus brasiliensis consumption in rats with streptozotocin (STZ)-induced gestational diabetes mellitus (GDM) and considered its potential as a functional food. The perinatal period was evaluated considering the daily exposure to A. brasiliensis before and after GDM induction (Abb and Aba, respectively). Nutritional characterization of A. brasiliensis was performed (centesimal composition, ß-glucans, phenolic compounds, and antioxidant activity). Concerning maternal reproductive development, the parameters assessed were maternal weight, oral glucose tolerance, hemogram, biochemical markers, redox status in blood, biochemical markers in amniotic fluid, and reproductive performance. Moreover, embryofetal development was evaluated. A. brasiliensis reduced hyperglycemia before STZ induction and maintained levels similar to the GDM group after STZ induction. A. brasiliensis also reduced alanine aminotransferase, aspartate aminotransferase, triglyceride, and cholesterol levels and increased high-density lipoprotein levels. The mushroom also presented antioxidant activity, improving parameters of oxidative stress. Furthermore, it protected the conceptus from actions promoted by STZ concerning external abnormalities. Thus, daily intake of A. brasiliensis in GDM suggests its potential as a functional food because the nutritional characterization of this mushroom indicated important antioxidant activity, improving lipid and glycemic functions and preventing oxidative damage from STZ.


Assuntos
Agaricus , Diabetes Gestacional , Animais , Feminino , Feto , Alimento Funcional , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA