Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970730

RESUMO

The development of technologies that allow the production of enzymes at a competitive cost is of great importance for several biotechnological applications, and the use of agro-industrial by-products is an excellent alternative to minimize costs and reduce environmental impacts. This study aimed to produce endo-xylanases using agro-industrial substrates rich in hemicellulose as sources of xylan in culture media. For this purpose, the yeast Cryptococcus laurentti and five lignocellulosic materials (defatted rice bran, rice husk, corn cob, oat husks, and soybean tegument), with and without pretreatment, were used as a source of xylan for enzyme production. To insert the by-products in the culture medium, they were dried and treated (if applicable) with 4% (w.v-1) NaOH and then added in a concentration of 2% (w.v-1). The cultures were agitated for 96 h, and the aliquots were removed to determine the enzymatic activities. Among the by-products studied, the maximum activity (8.7 U. mL-1 at pH 7.3) was obtained where rice bran was used. In contrast, corn cob was the by-product that resulted in lower enzyme production (1.6 U.mL-1). Thus, the defatted rice bran deserves special attention in front of the other by-products used since it provides the necessary substrate for producing endo-xylanases by yeast.

2.
Bioorg Chem ; 122: 105757, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339928

RESUMO

The incidence and number of deaths caused by melanoma have been increasing in recent years, and the pigment C-phycocyanin (C-PC) appears as a possible alternative to treat this disease. So, the objective of this study was to combine in silico and in vitro analysis to understand the main anti-melanoma pathways exerted by C-PC. We evaluated the ability of C-PC to bind to the main cellular targets related in the progression of melanoma through molecular docking, and the reflection of this bind in the biological effects in the B16F10 cell line through in vitro analysis. Our results showed that C-PC was able to bind BRAF and MEK, which are related to the signal transduction pathway for proliferation and survival. There was also an interaction between C-PC and cyclin-dependent kinase 4 and 6. In vitro analysis demonstrated that C-PC decreased B16F10 cell proliferation, as observed by cell viability and mitotic index assays. C-PC also interacted with matrix metalloproteinase 2 and 9 and N-cadherin, which may have caused the decrease in cell migration observed in vitro. Besides that, C-PC interacts with VEGF, a factor responsible for regulating the proliferation and cellular invasion pathways. Finally, C-PC did not alter the cell viability of the non-tumoral melanocytes. Therefore, C-PC is a strong anti-tumor candidate for the treatment of melanoma, since it acts in different cellular pathways of melanoma, without causing damage to non-tumoral cells.


Assuntos
Melanoma , Ficocianina , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metaloproteinase 2 da Matriz , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Ficocianina/farmacologia
3.
World J Microbiol Biotechnol ; 38(3): 52, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132493

RESUMO

Xylanolytic enzymes are involved in xylan hydrolysis, the main ones being endo-ß-1,4-xylanases (xylanases). This can be applied in the bioconversion of lignocellulosic materials into value-added products such as xylooligosaccharides (XOS). This study aimed to establish a protocol for the purification of xylanases, as well as to characterize and apply the purified enzyme extract in the production of XOS. The enzyme purification techniques studied were ammonium sulfate ((NH4)2SO4) and ethanol precipitation. Purification of xylanase by fractional precipitation (20-60%) with (NH4)2SO4 was more efficient than with ethanol because the salt precipitation reached a purification factor of 10.27-fold and an enzymatic recovery of 48.6% The purified xylanase exhibited optimum temperature and pH of 50 °C and 4.5, respectively. The Michaelis-Menten constant using beechwood xylan for the enzyme was 74.9 mg/mL. The addition of salts such as CaCl2, ZnCl2, and FeCl3 in the reaction medium increased the xylanase activity. Xylanase showed greater thermal stability (half-life = 169 h) at 45 °C and pH 4.5. Under these conditions and in the presence of Ca2+ (10 mmol/L) the enzyme was even more stable (half-life = 231 h). Total XOS contents (6.7 mg/mL) and the conversion of xylan to XOS (22.3%) between 2 and 24 h were statistically equal. The hydrolysates showed the majority composition of xylobiose, xylotriose, and xylose. The addition of Ca2+ ions did not contribute to an increase in the total XOS content or to a greater conversion of xylan into XOS, but the hydrolysate was richer in xylobiose and had a lower xylose content.


Assuntos
Endo-1,4-beta-Xilanases , Glucuronatos , Aureobasidium , Hidrólise , Oligossacarídeos , Xilanos
4.
Appl Biochem Biotechnol ; 194(2): 862-881, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34550500

RESUMO

Xylooligosaccharides (XOS) are non-digestible and fermentable oligomers that stand out for their efficient production by enzymatic hydrolysis and beneficial effects on human health. This study aimed to investigate the influence of the main reaction parameters of the beechwood xylan hydrolysis using crude xylanase from Aureobasidium pullulans CCT 1261, thus achieving the maximum XOS production. The effects of temperature (40 to 50 °C), reaction time (12 to 48 h), type of agitation, substrate concentration (1 to 6%, w/v), xylanase loading (100 to 300 U/g xylan), and pH (4.0 to 6.0) on the XOS production were fully evaluated. The most suitable conditions for XOS production included orbital shaking of 180 rpm, 40 °C, and 24 h of reaction. High contents of total XOS (10.1 mg/mL) and XOS with degree of polymerization (DP) of 2-3 (9.7 mg/mL), besides to a high percentage of XOS (99.1%), were obtained at 6% (w/v) of beechwood xylan, xylanase loading of 260 U/g xylan, and pH 6.0. The establishment of the best hydrolysis conditions allowed increasing both the content of total XOS 1.5-fold and the percentage of XOS by 9.4%, when compared to the initial production (6.7 mg/mL and 89.7%, respectively). Thus, this study established an efficient enzymatic hydrolysis process that results in a hydrolysate containing XOS with potential prebiotic character (i.e., rich in XOS with DP 2-3) and low xylose amounts.


Assuntos
Glucuronatos , Oligossacarídeos
5.
Acta sci., Biol. sci ; 43: e54966, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1460983

RESUMO

Many food, cosmetic and pharmaceutical industries have increased their interest in short-chain esters due to their flavor properties. From the industrial standpoint, enzyme reactions are the most economical strategy to reach green products with neither toxicity nor damage to human health. Isoamyl butyrate (pear flavor) was synthesized by isoamyl alcohol (a byproduct of alcohol production) and butyric acid with the use of the immobilized lipase Lipozyme TL IM and hexane as solvents. Reaction variables (temperature, butyric acid concentration, isoamyl alcohol:butyric acid molar ratio and enzyme concentration) were investigated in ester conversion (%), concentration (mol L-1) and productivity (mmol ester g-1 mixture . h), by applying a sequential strategy of the Fractional Factorial Design (FFD) and the Central Composite Rotatable Design (CCRD). High isoamyl butyrate conversion of 95.8% was achieved at 24 hours. At 3 hours, the highest isoamyl butyrate concentration (1.64 mol L-1) and productivity (0.19 mmol ester g-1 mixture . h) were obtained under different reaction conditions. Due to high specificity and selectivity of lipases, process parameters of this study and their interaction with the Lipozyme TL IM are fundamental to understand and optimize the system so as to achieve maximum yield to scale up. Results show that fusel oil may be recycled by the green chemistry process proposed by this study.


Assuntos
Ativação Enzimática , Butiratos/administração & dosagem , Butiratos/análise , Isoamilase , Otimização de Processos/análise
6.
Acta Sci. Biol. Sci. ; 43: e54966, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-764592

RESUMO

Many food, cosmetic and pharmaceutical industries have increased their interest in short-chain esters due to their flavor properties. From the industrial standpoint, enzyme reactions are the most economical strategy to reach green products with neither toxicity nor damage to human health. Isoamyl butyrate (pear flavor) was synthesized by isoamyl alcohol (a byproduct of alcohol production) and butyric acid with the use of the immobilized lipase Lipozyme TL IM and hexane as solvents. Reaction variables (temperature, butyric acid concentration, isoamyl alcohol:butyric acid molar ratio and enzyme concentration) were investigated in ester conversion (%), concentration (mol L-1) and productivity (mmol ester g-1 mixture . h), by applying a sequential strategy of the Fractional Factorial Design (FFD) and the Central Composite Rotatable Design (CCRD). High isoamyl butyrate conversion of 95.8% was achieved at 24 hours. At 3 hours, the highest isoamyl butyrate concentration (1.64 mol L-1) and productivity (0.19 mmol ester g-1 mixture . h) were obtained under different reaction conditions. Due to high specificity and selectivity of lipases, process parameters of this study and their interaction with the Lipozyme TL IM are fundamental to understand and optimize the system so as to achieve maximum yield to scale up. Results show that fusel oil may be recycled by the green chemistry process proposed by this study.(AU)


Assuntos
Ativação Enzimática , Butiratos/administração & dosagem , Butiratos/análise , Isoamilase , Otimização de Processos/análise
7.
Biotechnol Prog ; 34(5): 1261-1268, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30281951

RESUMO

C-phycocyanin (C-PC) is a natural blue dye, and depending on its purity, which is measured by the ratio between the absorbance of the chromophore (A620 ) and the absorbance of the proteins (A280 ), it can be used in food (purity > 0.7), cosmetics (purity > 1.5), and therapeutic treatments (purity > 4.0). Several physical, chemical, and enzymatic methods of extraction are reported, however, few are able to extract C-PC with purity above 0.7. An innovative method of C-PC extraction with food grade purity from wet Spirulina platensis biomass is proposed. The cells were pretreated with ethylenediaminetetraacetic acid and subsequent C-PC extraction was performed with tris-(hydroxymethyl) aminomethane-SO4 buffer. C-PC was released after 12 h of cell pretreatment. Six variables of the extraction process were evaluated. The extraction temperature significantly influenced C-PC extraction yield and purity. In the best condition of cell pretreatment and extraction, C-PC with purity of 1.0 and extraction yield of 129.0 mg/g could be obtained to be used as a food dye without any purification process. Lastly, an ultrafiltration process was integrated and C-PC was concentrated 8.8-fold, resulting in purity of 1.6 and recovery of 93.4%.


Assuntos
Ácido Edético/química , Ficocianina/química , Ficocianina/isolamento & purificação
8.
Bioresour Technol ; 222: 210-216, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27718403

RESUMO

The use of processes for simultaneous production of bioproducts as enzymes and bioactive compounds is an interesting alternative to reduce environmental impacts. Thus, the aim of this study was to produce simultaneously, using the biorefinery concept, both proteases and bioactive compounds with antioxidant activity from Bacillus sp. P45 cultivation by using different by-products. The integrated process developed in this study enabled to obtain enzymes with proteolytic and keratinolytic properties in a process with alternate substrates from agro-industrial by-products (feather meal, residual feather meal and biomass), thus, creating an interesting alternative to managing them. The residual biomass provided the highest protease activity (1306.6U/mL) and the reused feather meal reached the highest keratinolytic activity (89U/mL), both at 32h of cultivation. Moreover, hydrolysates produced in cultivation using feather meal and residual biomass had high antioxidant activity, they have great potential as natural antioxidants.


Assuntos
Agroquímicos/química , Antioxidantes/síntese química , Resíduos Industriais , Peptídeo Hidrolases/síntese química , Animais , Bacillus/metabolismo , Biomassa , Peptídeo Hidrolases/química
9.
Bioresour Technol ; 219: 219-227, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27494103

RESUMO

The aim of this work was to study the co-production of the carbonic anhydrase, C-phycocyanin and allophycocyanin during cyanobacteria growth. Spirulina sp. LEB 18 demonstrated a high potential for simultaneously obtaining the three products, achieving a carbonic anhydrase (CA) productivity of 0.97U/L/d and the highest C-phycocyanin (PC, 5.9µg/mL/d) and allophycocyanin (APC, 4.3µg/mL/d) productivities. In the extraction study, high extraction yields were obtained from Spirulina using an ultrasonic homogenizer (CA: 25.5U/g; PC: 90mg/g; APC: 70mg/g). From the same biomass, it was possible to obtain three biomolecules that present high industrial value.


Assuntos
Anidrases Carbônicas/biossíntese , Ficobiliproteínas/biossíntese , Spirulina/metabolismo , Synechococcus/metabolismo , Biomassa
10.
Food Technol Biotechnol ; 54(4): 489-496, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28115908

RESUMO

Search for naturally grown food has stimulated the biotechnological production of carotenoids. Therefore, the use of the yeast Xanthophyllomonas dendrorhous has been researched due to its abilities to assimilate different sources as substrates and to produce high amounts of carotenoids. Furthermore, alternative sources have been used as the culture medium to reduce costs and environmental impact. A potent carotenoid is astaxanthin in view of its health-promoting and antioxidative properties. It consists of different geometrical isomers with trans and cis configuration. In X. dendrorhous this carotenoid is mostly found in the trans form, but cis isomers can also be found. Carotenoid production was investigated in culture medium containing by-products such as raw glycerol (from biodiesel) and parboiled rice effluent. The effects of the culture medium components on biomass concentration and specific and volumetric productions of carotenoids were verified by the Plackett-Burman design. Cultivations were carried out with yeast Xanthophyllomonas dendrorhous NRRL Y-17268 at 25 °C and 150 rpm for 168 h. In this study, maximum production of carotenoids was obtained under the following conditions (in g/L): raw glycerol 10, glucose 10, yeast extract 10, malt extract 10 and peptone 1 at pH=6. Resulting specific and volumetric productions of carotenoids were 326.8 and 4.1 µg/g, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA