Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(686): eabn3464, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36867683

RESUMO

As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.


Assuntos
Vacinas Anticâncer , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de DNA , Animais , Feminino , Camundongos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Imunização , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes , RNA Mensageiro/genética
2.
J Exp Med ; 215(6): 1571-1588, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29739835

RESUMO

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/citologia , Nucleosídeos/metabolismo , RNA Mensageiro/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Antígenos/metabolismo , Lipídeos/química , Macaca mulatta , Nanopartículas/química , Subunidades Proteicas/metabolismo , Fatores de Tempo , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA