Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clinics (Sao Paulo) ; 78: 100285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37783170

RESUMO

INTRODUCTION: Long QT Syndrome (LQTS) is an inherited disease with an abnormal electrical conduction system in the heart that can cause sudden death as a result of QT prolongation. LQT2 is the second most common subtype of LQTS caused by loss of function mutations in the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene. Although more than 900 mutations are associated with the LQTS, many of these mutations are not validated or characterized. METHODS AND RESULTS: Sequencing analyses of genomic DNA of a family with LQT2 identified a putative mutation. i.e., KCNH2(NM_000238.3): c.3099_3112del, in KCNH2 gene which appeared to be a definite pathogenic mutation. The family pedigree information showed a gender difference in clinical features and T-wave morphology between male and female patients. The female with mutation exhibited recurring ventricular arrhythmia and syncope, while two male carriers did not show any symptoms. In addition, T-wave in females was much flatter than in males. The female proband showed a positive reaction to the lidocaine test. Lidocaine injection almost completely blocked ventricular arrhythmia and shortened the QT interval by ≥30 ms. Treatment with propranolol, mexiletine, and implantation of cardioverter-defibrillators prevented the sustained ventricular tachycardia, ventricular fibrillation, and syncope, as assessed by a 3-year follow-up evaluation. CONCLUSIONS: A putative mutation c.3099_3112del in the KCNH2 gene causes LQT2 syndrome, and the pathogenic mutation mainly causes symptoms in female progeny.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Masculino , Feminino , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Fatores Sexuais , Mutação/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Síncope , Lidocaína
2.
Clinics ; 78: 100285, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520692

RESUMO

Abstract Introduction: Long QT Syndrome (LQTS) is an inherited disease with an abnormal electrical conduction system in the heart that can cause sudden death as a result of QT prolongation. LQT2 is the second most common subtype of LQTS caused by loss of function mutations in the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene. Although more than 900 mutations are associated with the LQTS, many of these mutations are not validated or characterized. Methods and results: Sequencing analyses of genomic DNA of a family with LQT2 identified a putative mutation. i.e., KCNH2(NM_000238.3): c.3099_3112del, in KCNH2 gene which appeared to be a definite pathogenic mutation. The family pedigree information showed a gender difference in clinical features and T-wave morphology between male and female patients. The female with mutation exhibited recurring ventricular arrhythmia and syncope, while two male carriers did not show any symptoms. In addition, T-wave in females was much flatter than in males. The female proband showed a positive reaction to the lidocaine test. Lidocaine injection almost completely blocked ventricular arrhythmia and shortened the QT interval by ≥30 ms. Treatment with propranolol, mexiletine, and implantation of cardioverter-defibrillators prevented the sustained ventricular tachycardia, ventricular fibrillation, and syncope, as assessed by a 3-year follow-up evaluation. Conclusions: A putative mutation c.3099_3112del in the KCNH2 gene causes LQT2 syndrome, and the pathogenic mutation mainly causes symptoms in female progeny.

3.
Genet Mol Biol ; 45(2): e20210378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377386

RESUMO

Atrial fibrillation (AF) represents the most common type of sustained cardiac arrhythmia in humans and confers a significantly increased risk for thromboembolic stroke, congestive heart failure and premature death. Aggregating evidence emphasizes the predominant genetic defects underpinning AF and an increasing number of deleterious variations in more than 50 genes have been involved in the pathogenesis of AF. Nevertheless, the genetic basis underlying AF remains incompletely understood. In the current research, by whole-exome sequencing and Sanger sequencing analysis in a family with autosomal-dominant AF and congenital patent ductus arteriosus (PDA), a novel heterozygous variation in the PRRX1 gene encoding a homeobox transcription factor critical for cardiovascular development, NM_022716.4:c.373G>T;p.(Glu125*), was identified to be in co-segregation with AF and PDA in the whole family. The truncating variation was not detected in 306 unrelated healthy individuals employed as controls. Quantitative biological measurements with a reporter gene analysis system revealed that the Glu125*-mutant PRRX1 protein failed to transactivate its downstream target genes SHOX2 and ISL1, two genes that have been causally linked to AF. Conclusively, the present study firstly links PRRX1 loss-of-function variation to AF and PDA, suggesting that AF and PDA share a common abnormal developmental basis in a proportion of cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA