Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(11): e0224896, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710643

RESUMO

Large trees, here defined as ≥60 cm trunk diameter, are the most massive organisms in tropical rain forest, and are important in forest structure, dynamics and carbon cycling. The status of large trees in tropical forest is unclear, with both increasing and decreasing trends reported. We sampled across an old-growth tropical rain forest landscape at the La Selva Biological Station in Costa Rica to study the distribution and performance of large trees and their contribution to forest structure and dynamics. We censused all large trees in 238 0.50 ha plots, and also identified and measured all stems ≥10 cm diameter in 18 0.50 ha plots annually for 20 years (1997-2017). We assessed abundance, species diversity, and crown conditions of large trees in relation to soil type and topography, measured the contribution of large trees to stand structure, productivity, and dynamics, and analyzed the decadal population trends of large trees. Large trees accounted for 2.5% of stems and ~25% of mean basal area and Estimated Above-Ground Biomass, and produced ~10% of the estimated wood production. Crown exposure increased with stem diameter but predictability was low. Large tree density was about twice as high on more-fertile flat sites compared to less fertile sites on slopes and plateaus. Density of large trees increased 27% over the study interval, but the increase was restricted to the flat more-fertile sites. Mortality and recruitment differed between large trees and smaller stems, and strongly suggested that large tree density was affected by past climatic disturbances such as large El Niño events. Our results generally do not support the hypothesis of increasing biomass and turnover rates in tropical forest. We suggest that additional landscape-scale studies of large trees are needed to determine the generality of disturbance legacies in tropical forest study sites.


Assuntos
Biodiversidade , Floresta Úmida , Árvores/crescimento & desenvolvimento , Costa Rica , Geografia , Luz , Caules de Planta/crescimento & desenvolvimento , Dinâmica Populacional
2.
Proc Natl Acad Sci U S A ; 115(44): 11268-11273, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322925

RESUMO

The Janzen-Connell hypothesis is a well-known explanation for why tropical forests have large numbers of tree species. A fundamental prediction of the hypothesis is that the probability of adult recruitment is less in regions of high conspecific adult density, a pattern mediated by density-dependent mortality in juvenile life stages. Although there is strong evidence in many tree species that seeds, seedlings, and saplings suffer conspecific density-dependent mortality, no study has shown that adult tree recruitment is negatively density dependent. Density-dependent adult recruitment is necessary for the Janzen-Connell mechanism to regulate tree populations. Here, we report density-dependent adult recruitment in the population of Handroanthus guayacan, a wind-dispersed Neotropical canopy tree species. We use data from high-resolution remote sensing to track individual trees with proven capacity to flower in a lowland moist forest landscape in Panama and analyze these data in a Bayesian framework similar to capture-recapture analysis. We independently quantify probabilities of adult tree recruitment and detection and show that adult recruitment is negatively density dependent. The annualized probability of adult recruitment was 3.03% ⋅ year-1 Despite the detection of negative density dependence in adult recruitment, it was insufficient to stabilize the adult population of H. guayacan, which increased significantly in size over the decade of observation.


Assuntos
Tabebuia/crescimento & desenvolvimento , Teorema de Bayes , Ecossistema , Florestas , Panamá , Densidade Demográfica , Dinâmica Populacional , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Clima Tropical
3.
PLoS One ; 12(10): e0183819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981502

RESUMO

Have tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively analyzed, the effects of the shorter environmental gradients typical of mesoscale TRF landscapes remain poorly understood. To evaluate multi-decadal performance of an old-growth TRF at the La Selva Biological Station, Costa Rica, we established 18 0.5-ha annually-censused forest inventory plots in a stratified-random design across major landscape edaphic gradients. Over the 17-year study period, there were moderate differences in stand dynamics and structure across these gradients but no detectable difference in woody productivity. We found large effects on forest structure and dynamics from the mega-Niño event at the outset of the study, with subdecadal recovery and subsequent stabilization. To extend the timeline to >40 years, we combined our findings with those from earlier studies at this site. While there were annual to multiannual variations in the structure and dynamics, particularly in relation to local disturbances and the mega-Niño event, at the longer temporal scale and broader spatial scale this landscape was remarkably stable. This stability contrasts notably with a current hypothesis of increasing biomass and dynamics of TRF, which we term the Bigger and Faster Hypothesis (B&FHo). We consider possible reasons for the contradiction and conclude that it is currently not possible to independently assess the vast majority of previously published B&FHo evidence due to restricted data access.


Assuntos
Biomassa , Clima , Floresta Úmida , Solo , Árvores/crescimento & desenvolvimento , Costa Rica
4.
Ecology ; 98(6): 1700-1709, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28376234

RESUMO

We developed a statistical framework to quantify mortality rates in canopy trees observed using time series from high-resolution remote sensing. By timing the acquisition of remote sensing data with synchronous annual flowering in the canopy tree species Handroanthus guayacan, we made 2,596 unique detections of 1,006 individual adult trees within 18,883 observation attempts on Barro Colorado Island, Panama (BCI) during an 11-yr period. There were 1,057 observation attempts that resulted in missing data due to cloud cover or incomplete spatial coverage. Using the fraction of 123 individuals from an independent field sample that were detected by satellite data (109 individuals, 88.6%), we estimate that the adult population for this species on BCI was 1,135 individuals. We used a Bayesian state-space model that explicitly accounted for the probability of tree detection and missing observations to compute an annual adult mortality rate of 0.2%·yr-1 (SE = 0.1, 95% CI = 0.06-0.45). An independent estimate of the adult mortality rate from 260 field-checked trees closely matched the landscape-scale estimate (0.33%·yr-1 , SE = 0.16, 95% CI = 0.12-0.74). Our proof-of-concept study shows that one can remotely estimate adult mortality rates for canopy tree species precisely in the presence of variable detection and missing observations.


Assuntos
Tecnologia de Sensoriamento Remoto , Árvores/fisiologia , Teorema de Bayes , Colorado , Ilhas , Panamá
5.
PLoS One ; 10(7): e0118403, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26153693

RESUMO

Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods--binary support vector machine (SVM) and biased SVM--for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer's accuracies of 94-97% for the three focal species, and field validation of the predicted crown objects indicated that these had user's accuracies of 94-100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems.


Assuntos
Florestas , Imageamento Tridimensional/métodos , Análise Espectral/métodos , Árvores/fisiologia , Clima Tropical , Intervalos de Confiança , Geografia , Ilhas , Panamá , Especificidade da Espécie , Máquina de Vetores de Suporte
6.
Glob Chang Biol ; 19(11): 3423-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23824759

RESUMO

Tropical rainforests have experienced episodes of severe heat and drought in recent decades, and climate models project a warmer and potentially drier tropical climate over this century. However, likely responses of tropical rainforests are poorly understood due to a lack of frequent long-term measurements of forest structure and dynamics. We analyzed a 12-year record (1999-2010) of 47 817 annual measurements of canopy height to characterize the response of an old-growth Neotropical rainforest to the severe heat and drought associated with the 1997-1998 El Niño. Well-drained soils on slopes and plateaus experienced a threefold increase in the fraction of the landscape in gaps (≤2 m) and a reduction in the fraction in high canopy (>15 m) causing distributions of canopy height to depart from equilibrium for a period of 2-3 years. In contrast, forests on low-lying alluvial terraces remained in equilibrium and were nearly half as likely to experience upper canopy (>15 m) disturbance over the 12 years of observation. Variation in forest response across topographic positions suggests that tropical rainforests are more sensitive to moisture deficits than high temperature and that topography likely structures landscape-level variation in the severity of drought impacts.


Assuntos
Árvores/crescimento & desenvolvimento , Costa Rica , Secas , Temperatura , Clima Tropical
7.
PLoS One ; 8(4): e60875, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613748

RESUMO

Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection and Ranging (LiDAR), we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent of the Zeta distribution (λ) as a metric to quantify and compare the negative relationship between canopy gap frequency and size across sites. Despite variable canopy height and forest type, values of λ were highly conservative (λ mean  = 1.83, s  = 0.09), and little variation was observed regionally among geologic substrates and forest types, or at the landscape level comparing depositional-floodplain and erosional terra firme landscapes. λ-values less than 2.0 indicate that these forests are subjected to large gaps that reset carbon stocks when they occur. Consistency of λ-values strongly suggests similarity in the mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.


Assuntos
Fenômenos Ecológicos e Ambientais , Árvores/crescimento & desenvolvimento , Peru
8.
Ecol Lett ; 12(2): 155-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143827

RESUMO

A fundamental property of all forest landscapes is the size frequency distribution of canopy gap disturbances. But characterizing forest structure and changes at large spatial scales has been challenging and most of our understanding is from permanent inventory plots. Here we report the first application of light detection and ranging remote sensing to measurements of canopy disturbance and regeneration in an old-growth tropical rain forest landscape. Pervasive local height changes figure prominently in the dynamics of this forest. Although most canopy gaps recruited to higher positions during 8.5 years, size frequency distributions were similar at two points in time and well-predicted by power-laws. At larger spatial scales (hundreds of ha), height increases and decreases occurred with similar frequency and changes to canopy height that were analysed using a height transition matrix suggest that the distribution of canopy height at the beginning of the study was close to the projected steady-state equilibrium under the recent disturbance regime. Taken together, these findings show how widespread local height changes can produce short-term stability in a tropical rain forest landscape.


Assuntos
Árvores/crescimento & desenvolvimento , Clima Tropical , Costa Rica , Luz , Dinâmica Populacional , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA