Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. microbiol ; 49(1): 87-96, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889214

RESUMO

ABSTRACT Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.


Assuntos
Solo/química , Microbiologia do Solo , Bactérias/isolamento & purificação , Filogenia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Petróleo/análise , Petróleo/metabolismo , Biodiversidade , Áreas Alagadas , Nitrogênio/metabolismo
2.
Braz. J. Microbiol. ; 49(1): 87-96, jan.-mar. 2018. ilus, mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18541

RESUMO

Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.(AU)


Assuntos
Áreas Alagadas/análise , Contagem de Colônia Microbiana , Bactérias Fixadoras de Nitrogênio , Cianobactérias , Poluição por Petróleo
3.
Braz J Microbiol ; 49(1): 87-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28827029

RESUMO

Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Nitrogênio/metabolismo , Petróleo/análise , Petróleo/metabolismo , Filogenia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Áreas Alagadas
4.
Microb Ecol ; 69(2): 434-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524570

RESUMO

For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.


Assuntos
Alouatta/microbiologia , Dieta/veterinária , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Comportamento Alimentar , Feminino , Frutas , Masculino , México , Folhas de Planta , Estações do Ano
5.
ISME J ; 7(7): 1344-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23486247

RESUMO

The gastrointestinal (GI) microbiome contributes significantly to host nutrition and health. However, relationships involving GI microbes, their hosts and host macrohabitats remain to be established. Here, we define clear patterns of variation in the GI microbiomes of six groups of Mexican black howler monkeys (Alouatta pigra) occupying a gradation of habitats including a continuous evergreen rainforest, an evergreen rainforest fragment, a continuous semi-deciduous forest and captivity. High throughput microbial 16S ribosomal RNA gene sequencing indicated that diversity, richness and composition of howler GI microbiomes varied with host habitat in relation to diet. Howlers occupying suboptimal habitats consumed less diverse diets and correspondingly had less diverse gut microbiomes. Quantitative real-time PCR also revealed a reduction in the number of genes related to butyrate production and hydrogen metabolism in the microbiomes of howlers occupying suboptimal habitats, which may impact host health.


Assuntos
Alouatta/microbiologia , Fenômenos Fisiológicos Bacterianos , Dieta , Ecossistema , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Fezes/microbiologia , México , RNA Ribossômico 16S/genética
6.
Environ Microbiol ; 15(4): 1103-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22816485

RESUMO

Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our understanding of the composition and relative abundance of previously poorly described cyanobacterial assemblages in mangrove ecosystems.


Assuntos
Cianobactérias/classificação , Cianobactérias/genética , Ecossistema , Variação Genética/genética , Microbiologia do Solo , Áreas Alagadas , Sequência de Bases , Brasil , RNA Ribossômico/genética , Árvores/genética
7.
FEMS Microbiol Ecol ; 80(2): 312-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22611551

RESUMO

The cyanobacterial community colonizing phyllosphere in a well-preserved Brazilian mangrove ecosystem was assessed using cultivation-independent molecular approaches. Leaves of trees that occupy this environment (Rhizophora mangle,Avicennia schaueriana and Laguncularia racemosa) were collected along a transect beginning at the margin of the bay and extending upland. The results demonstrated that the phyllosphere of R. mangle and L. racemosa harbor similar assemblages of cyanobacteria at each point along the transect. A. schaueriana, found only in the coastal portions of the transect, was colonized by assemblages with lower richness than the other trees. However, the results indicated that spatial location was a stronger driver of cyanobacterial community composition than plant species. Distinct cyanobacterial communities were observed at each location along the coast-to-upland transect. Clone library analysis allowed identification of 19 genera of cyanobacteria and demonstrated the presence of several uncultivated taxa. A predominance of sequences affiliated with the orders Nostocales and Oscillatoriales was observed, with a remarkable number of sequences similar to genera Symphyonemopsis/Brasilonema (order Nostocales). The results demonstrated that phyllosphere cyanobacteria in this mangrove forest ecosystem are influenced by environmental conditions as the primary driver at the ecosystem scale, with tree species exerting some effect on community structure at the local scale.


Assuntos
Avicennia/crescimento & desenvolvimento , Combretaceae/crescimento & desenvolvimento , Cianobactérias/classificação , Rhizophoraceae/crescimento & desenvolvimento , Microbiologia da Água , Avicennia/microbiologia , Sequência de Bases , Baías/microbiologia , Brasil , Combretaceae/microbiologia , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Variação Genética , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Rhizophoraceae/microbiologia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA