Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11137, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750097

RESUMO

Aquatic detritivores are highly sensitive to changes in temperature and leaf litter quality caused by increases in atmospheric CO2. While impacts on detritivores are evident at the organismal and population level, the mechanisms shaping ecological communities remain unclear. Here, we conducted field and laboratory experiments to examine the interactive effects of changes in leaf litter quality, due to increasing atmospheric CO2, and warming, on detritivore survival (at both organismal and community levels) and detritus consumption rates. Detritivore community consisted of the collector-gathering Polypedilum (Chironomidae), the scraper and facultative filtering-collector Atalophlebiinae (Leptophlebiidae), and Calamoceratidae (Trichoptera), a typical shredder. Our findings reveal intricate responses across taxonomic levels. At the organismal level, poor-quality leaf litter decreased survivorship of Polypedilum and Atalophlebiinae. We observed taxon-specific responses to warming, with varying effects on growth and consumption rates. Notably, species interactions (competition, facilitation) might have mediated detritivore responses to climate stressors, influencing community dynamics. While poor-quality leaf litter and warming independently affected detritivore larvae abundance of Atalophebiinae and Calamoceratidae, their combined effects altered detritus consumption and emergence of adults of Atalophlebiinae. Furthermore, warming influenced species abundances differently, likely exacerbating intraspecific competition in some taxa while accelerating development in others. Our study underscores the importance of considering complex ecological interactions in predicting the impact of climate change on freshwater ecosystem functioning. Understanding these emergent properties contributes to a better understanding of how detritivore communities may respond to future environmental conditions, providing valuable insights for ecosystem management and conservation efforts.


Assuntos
Água Doce , Folhas de Planta , Animais , Mudança Climática , Ecossistema , Temperatura , Dióxido de Carbono/metabolismo
2.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
3.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
4.
Oecologia ; 192(3): 745-753, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016526

RESUMO

Biotic and abiotic factors may individually or interactively disrupt plant-pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant-pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant-pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.


Assuntos
Polinização , Comportamento Predatório , Animais , Flores , Insetos , Plantas
5.
Oecologia ; 188(1): 213-222, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29869019

RESUMO

The strength and outcome of mutualistic interactions can be highly dependent on the combination of traits of the species involved. Distinct foraging strategies (e.g., hunting mode) of mutualistic predators may cause predator-prey interactions to vary, potentially affecting the strength of trophic cascades. We evaluate the causes of variation in the strength of spider-plant mutualisms by focusing on contrasting hunting modes of two spiders: an actively hunting lynx spider (Peucetia sp.) and a sit-and-wait crab spider (Misumenops argenteus). We manipulated spider species composition by assigning each plant to one of the following treatments: (1) no spiders; (2) sit-and-wait spiders only; (3) actively hunting spiders only; (4) actively hunting + sit-and-wait spiders. We then examined the independent and interactive effects of spider species on floral herbivory and fitness of the glandular trichome-bearing plant, Trichogoniopsis adenantha (Asteraceae). Both spider species increased plant fitness by suppressing herbivores and increasing ovary fertilization, but the overall net benefit of spiders was contingent on spider hunting mode. Sit-and-wait spiders promoted stronger positive cascading effects compared to actively hunting spiders. The combination of spider species suppressed herbivores in an additive manner; their combined impact on plant fitness, however, was lower than expected, suggesting that the inter-specific interaction between spiders is slightly antagonistic. Thus, both spider species combined weakened the strength of this spider-plant mutualism. Our findings offer a general framework for understanding the critical role of predator foraging mode in trophic cascades.


Assuntos
Aranhas , Animais , Ecossistema , Plantas , Comportamento Predatório , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA