Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 241: 124497, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37080405

RESUMO

Carboxymethylcellulose (CMC) and keratin nanoparticle (KNP) hydrogels were obtained, characterized, and applied as drug delivery systems (DDSs) for the first time. Lyophilized CMC/KNP mixtures containing 10, 25, and 50 wt% of KNPs were kept at 170 °C for 90 min to crosslink CMC chains through a solid-state reaction with the KNPs. The hydrogels were characterized by infrared spectroscopy, thermal analyses, X-ray diffraction, mechanical measurements, and scanning electron microscopy. The infrared spectra indicated the formation of ester and amide linkages between crosslinked CMC and KNPs. The elastic modulus of the hydrogel containing 10 wt% KNPs was 2-fold higher than that of the hydrogel containing 50 wt% KNPs. The mechanical properties influenced the hydrogel stability and water uptake. The anti-inflammatory prednisolone (PRED) drug was incorporated into the hydrogels, and the release mechanism was investigated. The hydrogels supported PRED release by drug desorption for approximately 360 h. A sustained release mechanism was achieved. The CMC/KNP and CMC/KNP/PRED hydrogels were cytocompatible toward mammalian cells. The CMC/KNP/PRED set imparted the highest cell viability after 7 days of incubation. This study showed a straightforward procedure to create DDSs (chemically crosslinked) based on polysaccharides and proteins for efficient PRED delivery.


Assuntos
Hidrogéis , Nanopartículas , Animais , Hidrogéis/química , Queratinas , Carboximetilcelulose Sódica/química , Prednisolona/farmacologia , Anti-Inflamatórios , Mamíferos
2.
Carbohydr Polym ; 273: 118541, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560953

RESUMO

Ideal wound dressings should be biocompatible, exhibit high antibacterial activity, and promote blood coagulation. To impart these imperative functions, carboxymethyl-kappa-carrageenan was incorporated into poly(vinyl alcohol) nanofibers (PVA-CMKC). The antibacterial activity of the nanofibers was evaluated. Adsorption of two important blood proteins, fibrinogen and albumin, was also assessed. The adhesion and activation of platelets, and the clotting of whole blood were evaluated to characterize the ability of the nanofibers to promote hemostasis. Adhesion and morphology of both Staphylococcus aureus and Pseudomonas aeruginosa were evaluated using fluorescence microscopy and scanning electron microscopy. CMKC-containing nanofibers demonstrated significant increases in platelet adhesion and activation, percentage of coagulation in whole blood clotting test and fibrinogen adsorption, compared to PVA nanofibers, showing blood coagulation activity. Incorporating CMKC also reduces adhesion and viability of S. aureus and P. aeruginosa bacteria after 24 h of incubation. PVA-CMKC nanofibers show potential application as dressings for wound healing applications.


Assuntos
Antibacterianos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Carragenina/farmacologia , Nanofibras/química , Cicatrização/efeitos dos fármacos , Albuminas/metabolismo , Antibacterianos/química , Bandagens , Materiais Biocompatíveis/farmacologia , Carragenina/química , Fibrinogênio/metabolismo , Humanos , Microscopia Eletrônica de Varredura/métodos , Ativação Plaquetária/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
3.
Pharmaceutics ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925380

RESUMO

Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.

4.
Int J Biol Macromol ; 183: 727-742, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33915214

RESUMO

In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.


Assuntos
Anti-Infecciosos/síntese química , Materiais Biocompatíveis/síntese química , Carragenina/química , Quitosana/química , Polissacarídeos Bacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Embalagem de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polieletrólitos , Cicatrização
5.
Macromol Biosci ; 21(1): e2000292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021064

RESUMO

This study presents a new type of biocompatible nanofiber based on poly(vinyl alcohol) (PVA) and carboxymethyl-kappa-carrageenan (CMKC) blends, produced with no generation of hazardous waste. The nanofibers are produced by electrospinning using PVA:CMKC blends with ratios of 1:0, 1:0.25, 1:0.4, 1:0.5, and 1:0.75 (w/w PVA:CMKC) in aqueous solution, followed by thermal crosslinking. The diameter of the fibers is in the nanometer scale and below 300 nm. Fourier transform infrared spectroscopy shows the presence of the carboxyl and sulfate groups in all the fibers with CMKC. The nanofibers from water-soluble polymers are stabilized by thermal crosslinking. The incorporation of CMKC improves cytocompatibility, biodegradability, cell growth, and cell adhesion, compared to PVA nanofibers. Furthermore, the incorporation of CMKC modulates phenotype of human adipose-derived stem cells (ADSCs). PVA/CMKC nanofibers enhance ADSC response to osteogenic differentiation signals and are therefore good candidates for application in tissue engineering to support stem cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanofibras/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Carragenina/química , Carragenina/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química
6.
Int J Biol Macromol ; 152: 483-491, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32109473

RESUMO

Chemical modification of polysaccharides is an important route to enhance, develop or change polysaccharide properties. In this study, carboxymethylation of kappa-carrageenan (KC) with monochloroacetic acid was performed to achieve different degrees of substitution (DS) of carboxymethyl-kappa-carrageenan (CMKC). The degree of substitution ranged from 0.8 to 1.6 and was calculated from the 1H NMR spectra. The chemical structure of the CMKCs was further characterized by FT-IR, and 13C NMR. FT-IR confirmed the carboxymethylation. Carboxymethylation increased viscosity of KC in water and decreased viscosity of KC in synthetic human sweat. Tests with human adipose derived stem cells showed higher viability and lower cytotoxicity for CMKCs when compared to KC. CMKCs showed no hemolytic activity to human red blood cells. CMKCs have increased antioxidant activity compared to KC. In antibacterial assays, CMKCs with DS of 0.8, 1.0 and 1.2 exhibited growth inhibition against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. CMKC with DS ranging from 1.0 to 1.2 are good candidate biomaterials for cell-contacting applications.


Assuntos
Antibacterianos/química , Antioxidantes/química , Materiais Biocompatíveis/química , Carragenina/química , Acetatos/química , Adipócitos/citologia , Tecido Adiposo/citologia , Bacillus cereus , Sobrevivência Celular , Escherichia coli , Sequestradores de Radicais Livres , Hemólise , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Polímeros/química , Polissacarídeos/química , Pseudomonas aeruginosa , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Células-Tronco/citologia
7.
Int J Biol Macromol ; 152: 77-89, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092423

RESUMO

To obtain pectin-based films is challenging due to the aqueous instability of polyelectrolyte mixtures. We overcome this issue by blending chitosan to pectin of high O-methoxylation degree (56%), followed by solvent evaporation. A durable film containing 74 wt% pectin content was produced and used as an adsorbent material toward Cu(II) ions. Kinetic and adsorption equilibrium studies showed that the pseudo-second-order and Sips isotherm models adjusted well to the experimental data, respectively. Langmuir isotherm indicated a maximum adsorption capacity (qm) for Cu(II) removal of 29.20 mg g-1. Differential scanning calorimetry, contact angle measurements, and X-ray photoelectron spectroscopy confirm the adsorption. The chemisorption plays an essential role in the process; thereby, the film reusability is low. After adsorption, the cytocompatible film/Cu(II) pair prevents the proliferation of Escherichia coli.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cobre/química , Cobre/isolamento & purificação , Pectinas/química , Pectinas/farmacologia , Água/química , Adsorção , Quitosana/química , Escherichia coli/efeitos dos fármacos , Cinética , Teste de Materiais , Metilação , Soluções
8.
Mater Sci Eng C Mater Biol Appl ; 106: 110258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753363

RESUMO

Here, we have demonstrated the production and characterization of hydrogel scaffolds based on chitosan/gellan gum (CS/GG) assemblies, without any covalent and metallic crosslinking agents, conventionally used to yield non-soluble polysaccharide-based materials. The polyelectrolyte complexes (physical hydrogels called as PECs) are characterized by Fourier-transform infrared spectroscopy, wide-angle X-ray scattering, and scanning electron microscopy. Hydrogels containing chitosan (CS) excesses (ranging from 60 to 80 wt%) were created. Durable polysaccharide-based scaffolds with structural homogeneity and interconnecting pore networks are developed by modulating the CS/GG weight ratio. The CS/GG hydrogel prepared at 80/20 CS/GG weight ratio (sample CS/GG80-20) is cytocompatible, supporting the attachment, growth, and spreading of bone marrow mesenchymal stem cells (BMSCs) after nine days of cell culture. The cytocompatibility is correlated to the swelling capacity of the PEC in PBS buffer (pH 7.4). By controlling the CS content, we can tune the water uptake of the material, enhancing the capacity to serve as a three-dimensional cell scaffold for BMSCs. This work presents for the first time that CS/GG hydrogels can be applied as scaffolds for tissue engineering purposes.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Polissacarídeos Bacterianos/química , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
9.
Mater Sci Eng C Mater Biol Appl ; 107: 110357, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761187

RESUMO

This study reports the synthesis, characterization and biological properties of films based on poly(vinyl alcohol) (PVA) and a cationic tannin polymer derivative (TN). Films are obtained from polymeric blends by tuning the PVA/TN weight ratios. The materials are characterized through infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle measurements, mechanical analyses, and scanning electron microscopy. More hydrophilic surfaces are created by modulating the PVA and TN concentrations in the blends. Disintegration tests showed that the films present durability in phosphate buffer (pH 7.4) and low stability in simulated gastric fluid (pH 1.2). The film created at 90/10 PVA/TN weight ratio and crosslinked at 109 PVA/glutaraldehyde molar ratio (sample PVA10/TN10) supports the attachment and proliferation of bone marrow mesenchymal stem cells after 7 days of culture. The scaffolding capacity of the PVA10/TN10 surface is compared with titanium, one of the most important biomedical materials used in bone replacements. Also, the PVA/TN films exhibited cytocompatibility, antioxidant and antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. These properties make PVA/TN films are candidates for biomedical applications in the tissue engineering field.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Taninos/farmacocinética , Animais , Antibacterianos/química , Antioxidantes/farmacocinética , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Glutaral/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Álcool de Polivinil/química , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Taninos/química
10.
Carbohydr Polym ; 215: 272-279, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981354

RESUMO

Alginate/chitosan (ALG/CHT) and alginate/N,N-dimethyl chitosan (ALG/DMC) polyelectrolyte complex (PEC)-based adsorbents with high capacities for removing Pb(II) from aqueous systems are produced in [1-hydrogen-3-methylimidazolium hydrogen sulfate ionic liquid ([Hmim][HSO4-]). The [Hmim][HSO4-] is recovered, characterized by 1H NMR and reused to yield novel polysaccharide-based adsorbents. As-obtained PEC materials are characterized through infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and Zeta potential measurements. Kinetic and equilibrium adsorption studies reveal that the pseudo-second-order Kinetic, as well as the Redlich-Peterson isotherm, provide the best fits for the experimental data, respectively. CHT/ALG and DMC/ALG adsorbents promoted maximum adsorption capacities (qm) of 529.4 mg g-1 and 560.2 mg g-1, respectively. After adsorption, the materials are characterized by infrared spectroscopy and X-ray photoelectron spectroscopy, confirming that the chemisorption prevails upon Pb(II) removal. Also, PECs produced in the recovered [Hmim][HSO4-] have good capacities for removing Pb(II) ions from aqueous systems as well. This study showed that the [Hmim][HSO4-] is an alternative solvent to prepare novel and eco-friendly PEC-based adsorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA