Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 307: 198618, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34740719

RESUMO

The second wave of COVID-19 caused by severe acute respiratory syndrome virus (SARS-CoV-2) is rapidly spreading over the world. Mechanisms behind the flee from current antivirals are still unclear due to the continuous occurrence of SARS-CoV-2 genetic variants. Brazil is the world's second-most COVID-19 affected country. In the present study, we identified the genomic and proteomic variants of Brazilian SARS-CoV-2 isolates. We identified 16 different genotypic variants were found among the 27 isolates. The genotypes of three isolates such as Bra/1236/2021 (G15), Bra/MASP2C844R2/2020 (G11), and Bra/RJ-DCVN5/2020 (G9) have a unique mutant in NSP4 (S184N), 2'O-Mutase (R216N), membrane protein (A2V) and Envelope protein (V5A). A mutation in RdRp of SARS-CoV-2, particularly the change of Pro-to Leu-at 323 resulted in the stabilization of the structure in BRA/CD1739-P4/2020. NSP4, NSP5 protein mutants are more virulent in genotype 15 and 16. A fast protein folding rate changes the structural stability and leads to escape for current antivirals. Thus, our findings help researchers to develop the best potent antivirals based on the new mutant of Brazilian isolates.


Assuntos
Proteases 3C de Coronavírus/genética , Dobramento de Proteína , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Brasil , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Variação Genética/genética , Genoma Viral/genética , Humanos , Fosfoproteínas/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Virulência/genética
2.
J Glob Antimicrob Resist ; 16: 83-86, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30248412

RESUMO

OBJECTIVES: This study reports the draft genome sequence of Pseudoalteromonas piscicida strain 36Y_RITHPW, a marine Gammaproteobacteria that synthesises bioactive compounds with antagonistic activity against Vibrio parahaemolyticus, a multidrug-resistant strain that is the causative agent of acute hepatopancreatic necrosis disease (AHPND), reported in shrimp farm outbreaks from Asia to Mexico with mortality rates of 80-100%. METHODS: The genome of P. piscicida 36Y_RITHPW was sequenced with an Ion Torrent™ Personal Genome Machine™ (PGM) platform. A total of 606805 reads were constructed for a 308.48Mbp and 33.5×coverage. A high-quality draft assembly and ordering of contigs was obtained with Mauve. The annotation was obtained with RAST and antiSMASH. RESULTS: The genome size consists of 5.15Mbp, with a total of 4548 genes, 4217 protein-coding sequences and a GC content of 43.3%. Several resistance genes as well as other genes involved in the production of bacteriocins and ribosomally synthesised antibacterial peptides are also present. CONCLUSIONS: Mining of this draft genome provides valuable information to explain the antagonistic capacity of P. piscicida 36Y_RITHPW, a useful strain as a potential probiotic in shrimp aquaculture against pathogenic V. parahaemolyticus.


Assuntos
Genoma Bacteriano , Pseudoalteromonas/genética , Salinidade , Água do Mar/microbiologia , Animais , Antibiose , Aquicultura , México , Penaeidae/microbiologia , Probióticos , Pseudoalteromonas/fisiologia , Vibrio parahaemolyticus/fisiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA