Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 1): 159347, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228788

RESUMO

Nearly half of the world's urban population depends on aquifers for drinking water. These are increasingly vulnerable to pollution and overexploitation. Besides anthropogenic sources, pollutants such as arsenic (As) are also geogenic and their concentrations have, in some cases, been increased by groundwater pumping. Almost 40 % of Mexico's population relies on groundwater for drinking water purposes; much the aquifers in semi-arid and arid central and northern Mexico is contaminated by As. These are agricultural regions where irrigation water is primarily provided from intenstive pumping of the aquifers leading to long-standing declines in the water table. The focus of this study is the main aquifer within the Comarca Lagunera region in Northern Mexico. Although the scientific evidence demonstrates that health effects are associated with long-term exposure to elevated As concentrations, this knowledge has not yielded effective groundwater development and public health policy. A multidisciplinary approach - including the evaluation of geochemistry, human health risk and development and public health policy - was used to provide a current account of these links. The dissolved As concentrations measured exceeded the corresponding World Health Organization guideline for drinking water in 90 % of the sampled wells; for the population drinking this water, the estimated probability of presenting non-carcinogenic health effects was >90 %, and the lifetime risk of developing cancer ranged from 0.5 to 61 cases in 10,000 children and 0.2 to 33 cases in 10,000 adults. The results suggest that insufficient policy responses are due to a complex and dysfunctional groundwater governance framework that compromises the economic, social and environmental sustainability of this region. These findings may valuable to other regions with similar settings that need to design and enact better informed, science-based policies that recognize the value of a more sustainable use of groundwater resources and a healthier population.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Arsênio/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , México , Política de Saúde
2.
Water Res ; 185: 116257, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086466

RESUMO

This study identifies causes of rising arsenic (As) concentrations over 17 years in an inter-montane aquifer system located just north of the Trans-Mexican-Volcanic-Belt in the Mesa central physiographic region that is extensively developed by long-screened production wells. Arsenic concentrations increased by more than 10 µg/L in 14% (3/22) of re-sampled wells. Similarly, in a larger scale analysis wherein As concentrations measured in 137 wells in 2016 were compared to interpolated, baseline concentrations from 246 wells in 1999, As concentrations rose more than 10 µg/L in 30% of wells. Between 1999 and 2016, the percentage of all wells sampled in each basin-wide sampling campaign exceeding the World Health Organization's 10 µg/L drinking water limit increased from 38 to 64%. Principal Components Analysis (PCA), step-wise multiple regression, and Random Forest modeling (RF) revealed that high As concentrations are closely associated with high pH and temperature, and high concentrations of fluoride (F), molybdenum (Mo), lithium (Li), sodium (Na) and silica (Si), but low calcium (Ca) and nitrate (NO3) concentrations. Pumping-induced mixing with hot, geothermally impacted groundwater generates alkaline water through hydrolysis of silicate minerals. The rising pH converts oxyanion sorption sites from positive to negative releasing As (and Mo) to pore waters. The negative correlation between nitrate and As concentrations can be explained by conservative mixing of shallow, young groundwater with geothermally influenced groundwater. Therefore water carrying an anthropogenic contaminant dilutes water carrying geogenic contaminants. This process is enabled by long well screens. Over-exploitation of aquifers in geothermal regions for agriculture can drive As concentrations in water from production wells to toxic levels even as the total dissolved solids remain low.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , México , Poluentes Químicos da Água/análise
3.
Water Res ; 182: 115962, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32629319

RESUMO

Over the past decades, groundwater quality has deteriorated worldwide by nitrate pollution due to the intensive use of fertilizers in agriculture, release of untreated urban sewage and industrial wastewater, and atmospheric deposition. Likewise, groundwater is increasingly polluted by sulfate due to the release of domestic, municipal and industrial wastewaters, as well as through geothermal processes, seawater intrusion, atmospheric deposition, mineral dissolution, and acid rain. The urbanized and industrialized Monterrey valley has a long record of elevated nitrate and sulfate concentrations in groundwater with multiple potential pollution sources. This study aimed to track different sources and transformation processes of nitrate and sulfate pollution in Monterrey using a suite of chemical and isotopic tracers (δ2H-H2O, δ18O-H2O, δ15N-NO3, δ18O-NO3 δ34S-SO4, δ18O-SO4) combined with a probability isotope mixing model. Soil nitrogen and sewage were found to be the most important nitrate sources, while atmospheric deposition, marine evaporites and sewage were the most prominent sulfate sources. However, the concentrations of nitrate and sulfate were controlled by denitrification and sulfate reduction processes in the transition and discharge zones. The approach followed in this study is useful for establishing effective pollution management strategies in contaminated aquifers.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Teorema de Bayes , China , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Sulfatos
4.
Sci Total Environ ; 622-623: 1029-1045, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890573

RESUMO

Fluoride (F), naturally found in aquifers around the world at toxic concentrations, causes disease in millions of people. The long-term stability, however, of those concentrations within intensively pumped aquifers is poorly characterized. We assessed long-term stability in the spatial distribution of F concentrations in an intensively pumped aquifer within the semi-arid, inter-montane Independence Basin in central Mexico between 1999 and 2016. Although stable in 16 re-sampled wells, F concentrations increased in some localities across the basin by as much as 4mg/L. Changes in recharge pathways to the deep aquifer were identified by analyzing changes in δ2H, δ18O and Cl/Br mass ratios. In 1999, δ2H and δ18O values suggested the aquifer was recharged in the mountains. In 2016, however, substantial increases in δ18O values in the center of the basin suggest recharge water is derived from rainfall that had experienced increased evaporation. In 1999, the mass ratio Cl/Br in groundwater was slightly enriched over local rainfall, and followed a single mixing line on a plot of Cl. vs. Cl/Br. In 2016, however, three distinct groupings of wells were evident, all following different mixing lines. These changes suggest input from new sources including urban sewage, evaporate dissolution, connate sea water and geothermal waters. Step-wise multiple regression was used to quantify the impact of physical and chemical parameters on F concentrations. In 1999, Li (6.8±1.7) and Na (0.01±0.004) drove F concentrations (R2=0.54). In 2016, Na (0.013±0.0018), HCO3 (0.004±0.001), Ca (-0.0018±0.00045), and Mg (-0.055±0.023) drove F concentrations (0.78). Irrigation pumping and urban expansion within semi-arid, groundwater-dependent, inter-montane basins drive mixing of disparate groundwater chemistries and introduces new sources of recharge to aquifers inducing changes in aquifer chemistry including increasing concentrations of geogenic toxic elements.


Assuntos
Recuperação e Remediação Ambiental/métodos , Fluoretos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA