Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 67(7): 1369-1379, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29643061

RESUMO

Type 2 diabetes is associated with impaired exercise capacity. Alterations in both muscle perfusion and mitochondrial function can contribute to exercise impairment. We hypothesized that impaired muscle mitochondrial function in type 2 diabetes is mediated, in part, by decreased tissue oxygen delivery and would improve with oxygen supplementation. Ex vivo muscle mitochondrial content and respiration assessed from biopsy samples demonstrated expected differences in obese individuals with (n = 18) and without (n = 17) diabetes. Similarly, in vivo mitochondrial oxidative phosphorylation capacity measured in the gastrocnemius muscle via 31P-MRS indicated an impairment in the rate of ADP depletion with rest (27 ± 6 s [diabetes], 21 ± 7 s [control subjects]; P = 0.008) and oxidative phosphorylation (P = 0.046) in type 2 diabetes after isometric calf exercise compared with control subjects. Importantly, the in vivo impairment in oxidative capacity resolved with oxygen supplementation in adults with diabetes (ADP depletion rate 5.0 s faster, P = 0.012; oxidative phosphorylation 0.046 ± 0.079 mmol/L/s faster, P = 0.027). Multiple in vivo mitochondrial measures related to HbA1c These data suggest that oxygen availability is rate limiting for in vivo mitochondrial oxidative exercise recovery measured with 31P-MRS in individuals with uncomplicated diabetes. Targeting muscle oxygenation could improve exercise function in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Obesidade/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/administração & dosagem , Adulto , Idoso , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/complicações , Obesidade/terapia , Oxigênio/farmacologia , Consumo de Oxigênio/fisiologia , Comportamento Sedentário
2.
J Cardiovasc Pharmacol ; 65(2): 137-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25264749

RESUMO

Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.


Assuntos
Adamantano/análogos & derivados , Diabetes Mellitus Tipo 2 , Dipeptídeos/farmacologia , Mitocôndrias Musculares , Atividade Motora , Óxido Nítrico Sintase Tipo III/metabolismo , Adamantano/farmacologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/fisiologia , Proteínas Mitocondriais/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Músculo Liso Vascular/metabolismo , Biogênese de Organelas , Condicionamento Físico Animal/fisiologia , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA