Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124319, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866084

RESUMO

Tissue-engineered products (TEPs) are at the forefront of developmental medicines, precisely where monoclonal antibodies and recombinant cytokines were 30 years ago. TEPs development for treating skin wounds has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that currently have limited or no effective alternatives. This review aims to provide the reader with the process of translating an idea from the laboratory bench to clinical practice, specifically in the context of TEPs designing for skin wound healing. It encompasses historical perspectives, approved therapies, and offers a distinctive insight into the regulatory framework in Brazil. We explore the essential guidelines for quality testing, and nonclinical proof-of-concept considering the Brazilian Network of Experts in Advanced Therapies (RENETA) and International Standards and Guidelines (ICH e ISO). Adopting a multifaceted approach, our discussion incorporates scientific and industrial perspectives, addressing quality, biosafety, non-clinical viability, clinical trial and real-word data for pharmacovigilance demands. This comprehensive analysis presents a panoramic view of the development of skin TEPs, offering insights into the evolving landscape of this dynamic and promising field.


Assuntos
Pele , Engenharia Tecidual , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/lesões , Brasil
2.
Altern Lab Anim ; 52(1): 60-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061994

RESUMO

The Brazilian National Network of Alternative Methods (RENAMA), which is linked to the Ministry of Science, Technology and Innovation, is currently comprised of 51 laboratories from CROs, academia, industry and government. RENAMA's aim is to develop and validate new approach methodologies (NAMs), as well as train researchers and disseminate information on their use - thus reducing Brazilian, and consequently Latin American, dependence on external technology. Moreover, it promotes the adoption of NAMs by educators and trained researchers, as well as the implementation of good laboratory practice (GLP) and the use of certified products. The RENAMA network started its activities in 2012, and was originally comprised of three central laboratories - the National Institute of Metrology, Quality and Technology (INMETRO); the National Institute of Quality Control in Health (INCQS); and the National Brazilian Biosciences Laboratory (LNBio) - and ten associated laboratories. In 2022, RENAMA celebrated its 10th anniversary, a milestone commemorated by the organisation of a meeting attended by different stakeholders, including the RENAMA-associated laboratories, academia, non-governmental organisations and industry. Ninety-six participants attended the meeting, held on 26 May 2022 in Balneário Camboriú, SC, Brazil, as part of the programme of the XXIII Brazilian Congress of Toxicology 2022. Significant moments of the RENAMA were remembered, and new goals and discussion themes were established. The lectures highlighted recent innovations in the toxicological sciences that have translated into the assessment of consumer product safety through the use of human-relevant NAMs instead of the use of existing animal-based approaches. The challenges and opportunities in accepting such practices for regulatory purposes were also presented and discussed.


Assuntos
Aniversários e Eventos Especiais , Laboratórios , Animais , Humanos , Brasil
3.
Biotechnol Bioeng ; 120(12): 3602-3611, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37691178

RESUMO

Currently, there is a great need for the development of three-dimensional (3D) in vitro lung models. Particularly, the production of a suitable 3D model of pulmonary epithelium for understanding the pathophysiology of diseases such as the COVID-19 must consider the tissue architecture and presence, for example, of the angiotensin-converting enzyme-2 (ACE-2) in the cells. Different polymeric membranes are being used to support cell culturing, especially of lung cells, however, there is still no information about the culture of these cells onto bacterial nanocellulose (BNC) matrices. We have used the BNC matrix CellFate® as a support for the assembly of a 3D in vitro model of lung epithelium, composed of human lung fibroblasts (HLF) and lung adenocarcinoma cells (CALU-3). CellFate® matrices were made from bacterial fermentation resulting in a natural and biocompatible biopolymer. Cells were cultured onto CellFate® and maintained in a 5% CO2 humidified atmosphere at 37°C. Cell viability was assessed by the resazurin method The samples were, then, exposed to the air-liquid interface (ALI), and histologically analyzed. ACE-2 activity was verified on the hydrolyze of the fluorogenic substrate Mca-APK(Dnp)-OH, and its presence was evaluated by flow cytometry. The expression of the anionic transporter SLCO3A1 was evaluated by qPCR. Cell viability analysis indicates that CellFate® was not toxic to these cells. By flow cytometry, the presence of the ACE-2 was identified in the CALU-3 cells surface corroborating the results obtained from enzymatic activity analysis. The SLCO3A1 transporter expression was identified in cells cultured onto CellFate®, but not in cells cultured onto the transwell (control). CALU-3 cells cultivated onto CellFate® resulted in a pseudostratified organization, a typical morphology of the human respiratory tract epithelium. The current model opens perspectives for studies involving physiological characterization, improving its relevance for the understanding of the pathophysiology of diseases as well as the response to drugs.


Assuntos
Células Epiteliais , Pulmão , Humanos , Células Epiteliais/metabolismo , Células Cultivadas , Sobrevivência Celular , Angiotensinas/metabolismo
4.
Biomed Microdevices ; 23(1): 2, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386434

RESUMO

This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm-1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.


Assuntos
Nanopartículas Metálicas , Sobrevivência Celular , Eletrodos , Polímeros/toxicidade , Prata/toxicidade , Xilenos
5.
J Pharm Pharmacol ; 66(5): 694-704, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24438047

RESUMO

OBJECTIVES: In this study, we evaluated the effect of the proanthocyanidins-rich fraction (PRF) obtained from Croton celtidifolius bark in an experimental animal model of spinal cord injury and cell death induced by glutamate. METHODS: Experiments were conducted using adult male Wistar rats (10 weeks old and weighing 270-300g). Experimental groups were randomly allocated into the following groups: spinal cord injury (SCI) + vehicle group: rats were subjected to SCI plus intraperitoneal administration of vehicle (saline 10 ml/kg); SCI + PRF: rats were subjected to SCI plus intraperitoneal administration of PRF (10 mg/kg) at 1 and 6 h after injury and sham operated. KEY FINDINGS: The treatment with the proanthocyanidin-rich fraction significantly improved not only motor recovery and grip force but also H2 O2 or glutamate-induced cell death and reactive oxygen species generation induced by glutamate in dorsal root ganglion cells. In this study we demonstrate that the neuroprotective effect triggered by the proanthocyanidins-rich fraction appears to be mediated in part by the inhibition of N-methyl-D-aspartate-type glutamate receptors. CONCLUSIONS: Taken together, our results demonstrate that PRF treatment ameliorates spinal cord injury and glutamatergic excitotoxicity and could have a potential therapeutic use.


Assuntos
Croton/química , Ácido Glutâmico/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia , Proantocianidinas/uso terapêutico , Receptores de Glutamato/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Movimento/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Casca de Planta , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proantocianidinas/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
6.
Br J Pharmacol ; 167(8): 1737-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22862305

RESUMO

BACKGROUND AND PURPOSE: Kinin B(1) and B(2) receptors have been implicated in physiological and pathological conditions of the urinary bladder. However, their role in overactive urinary bladder (OAB) syndrome following spinal cord injury (SCI) remains elusive. EXPERIMENTAL APPROACH: We investigated the role of kinin B(1) and B(2) receptors in OAB after SCI in rats. KEY RESULTS: SCI was associated with a marked inflammatory response and functional changes in the urinary bladder. SCI resulted in an up-regulation of B(1) receptor mRNA in the urinary bladder, dorsal root ganglion and spinal cord, as well as in B(1) protein in the urinary bladder and B(1) and B(2) receptor protein in spinal cord. Interestingly, both B(1) and B(2) protein expression were similarly distributed in detrusor muscle and urothelium of animals with SCI. In vitro stimulation of urinary bladder with the selective B(1) or B(2) agonist elicited a higher concentration-response curve in the SCI urinary bladder than in naive or sham urinary bladders. Cystometry revealed that treatment of SCI animals with the B(2) selective antagonist icatibant reduced the amplitude and number of non-voiding contractions (NVCs). The B(1) antagonist des-Arg(9) -[Leu(8) ]-bradykinin reduced the number of NVCs while the non-peptide B(1) antagonist SSR240612 reduced the number of NVCs, the urinary bladder capacity and increased the voiding efficiency and voided volume. CONCLUSIONS AND IMPLICATIONS: Taken together, these data show the important roles of B(1) and B(2) receptors in OAB following SCI in rats and suggest that blockade of these receptors could be a potential therapeutic target for controlling OAB.


Assuntos
Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinária Hiperativa/fisiopatologia , Animais , Antagonistas de Receptor B1 da Bradicinina , Antagonistas de Receptor B2 da Bradicinina , Gânglios Espinais/fisiologia , Masculino , Contração Muscular , Ratos , Ratos Wistar , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/agonistas , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Bexiga Urinária/fisiologia , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/metabolismo
7.
Am J Physiol Renal Physiol ; 300(5): F1223-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367919

RESUMO

The ankyrin-repeat transient receptor potential 1 (TRPA1) has been implicated in pathological conditions of the bladder, but its role in overactive bladder (OAB) following spinal cord injury (SCI) remains unknown. In this study, using a rat SCI model, we assessed the relevance of TRPA1 in OAB induced by SCI. SCI resulted in tissue damage, inflammation, and changes in bladder contractility and in voiding behavior. Moreover, SCI caused upregulation of TRPA1 protein and mRNA levels, in bladder and in dorsal root ganglion (DRG; L6-S1), but not in corresponding segment of spinal cord. Alteration in bladder contractility following SCI was evidenced by enhancement in cinnamaldehyde-, capsaicin-, or carbachol-induced bladder contraction as well as in its spontaneous phasic activity. Of relevance to voiding behavior, SCI induced increase in the number of nonvoiding contractions (NVCs), an important parameter associated with the OAB etiology, besides alterations in other urodynamic parameters. HC-030031 (TRPA1 antagonist) treatment decreased the number and the amplitude of NVCs while the TRPA1 antisense oligodeoxynucleotide (AS-ODN) treatment normalized the spontaneous phasic activity, decreased the cinnamaldehyde-induced bladder contraction and the number of NVCs in SCI rats. In addition, the cinnamaldehyde-induced bladder contraction was reduced by exposure of the bladder preparations to HC-030031. The efficacy of TRPA1 AS-ODN treatment was confirmed by means of the reduction of TRPA1 expression in the DRG, in the corresponding segment of the spinal cord and in the bladder, specifically in detrusor muscle. The present data show that the TRPA1 activation and upregulation seem to exert an important role in OAB following SCI.


Assuntos
Acetanilidas/farmacologia , Anquirinas/antagonistas & inibidores , Gânglios Espinais/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Purinas/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Bexiga Urinária Hiperativa/prevenção & controle , Bexiga Urinária/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Anquirinas/genética , Anquirinas/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Capsaicina/farmacologia , Carbacol/farmacologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Contração Muscular/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/genética , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Urodinâmica/efeitos dos fármacos
8.
Rev Neurol ; 51(3): 165-74, 2010 Aug.
Artigo em Espanhol | MEDLINE | ID: mdl-20645267

RESUMO

AIM: To provide an updated view of the difficulties due to barriers and strategies used to allow the release of drugs in the central nervous system. INTRODUCTION: The difficulty for the treatment of many diseases of the central nervous system, through the use of intra-venous drugs, is due to the presence of barriers that prevent the release of the same: the blood-brain barrier, blood-cerebro-spinal fluid barrier and the blood-arachnoid barrier. DEVELOPMENT: The blood-brain barrier is the main barrier for the transport of drugs in the brain that also acts as a immunologic and metabolic barrier. The endothelial cells of the blood-brain barrier are connected to a junction complex through the interaction of transmembrane proteins that protrude from de inside to the outside, forming a connection between the endothelial cells. The transport of substances to the brain depends on the mechanisms of transport present in the barrier and the diffusion of these compounds also depends on the physicochemical characteristics of the molecule. Some diseases alter the permeability of the blood-brain barrier and thus the passage of drugs. Strategies such as the use of methods for drug delivery in the brain have been investigated. CONCLUSIONS: Further details regarding the mechanisms of transport across the blood-brain barrier and the changes in neuropathology would provide important information about the etiology of diseases and lead to better therapeutic strategies.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/fisiologia , Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/metabolismo , Encefalopatias/tratamento farmacológico , Encefalopatias/fisiopatologia , Sistema Nervoso Central/anatomia & histologia , Proteínas de Membrana/metabolismo , Preparações Farmacêuticas/administração & dosagem
9.
Auton Neurosci ; 140(1-2): 80-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18514588

RESUMO

Investigations show the paratrigeminal nucleus (Pa5) as an input site for sensory information from the sciatic nerve field. Functional or physical disruption of the Pa5 alters behavioral and somatosensory responses to nociceptive hindpaw stimulation or sciatic nerve electrostimulation (SNS), both contralateral to the affected structure. The nucleus, an input site for cranial and spinal nerves, known for orofacial nociceptive sensory processing, has efferent connections to structures associated with nociception and cardiorespiratory functions. This study aimed at determining the afferent sciatic pathway to dorsal lateral medulla by means of a neuronal tract-tracer (biocytin) injected in the iliac segment of the sciatic nerve. Spinal cord samples revealed bilateral labeling in the gracile and pyramidal or cuneate tracts from survival day 2 (lumbar L1/L2) to day 8 (cervical C2/C3 segments) following biocytin application. From day 10 to day 20 medulla samples showed labeling of the contralateral Pa5 to the injection site. The ipsilateral paratrigeminal nucleus showed labeling on day 10 only. The lateral reticular nucleus (LRt) showed fluorescent labeled terminal fibers on day 12 and 14, after tracer injection to contralateral sciatic nerve. Neurotracer injection into the LRt of sciatic nerve-biocytin-treated rats produced retrograde labeled neurons soma in the Pa5 in the vicinity of biocytin labeled nerve terminals. Therefore, Pa5 may be considered one of the first sites in the brain for sensory/nociceptive inputs from the sciatic nerve. Also, the findings include Pa5 and LRt in the neural pathway of the somatosympathetic pressor response to SNS and nocifensive responses to hindpaw stimulation.


Assuntos
Vias Aferentes/citologia , Bulbo/citologia , Nociceptores/citologia , Nervo Isquiático/citologia , Medula Espinal/citologia , Núcleo Espinal do Trigêmeo/citologia , Vias Aferentes/fisiologia , Animais , Transporte Axonal/fisiologia , Mapeamento Encefálico , Lateralidade Funcional/fisiologia , Lisina/análogos & derivados , Masculino , Bulbo/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Nociceptores/fisiologia , Dor/fisiopatologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Nervo Isquiático/fisiologia , Medula Espinal/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Núcleo Espinal do Trigêmeo/fisiologia
10.
Auton Neurosci ; 140(1-2): 72-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18511351

RESUMO

The paratrigeminal nucleus (Pa5), an input site for spinal, trigeminal, vagus and glossopharyngeal afferents, is a recognized site for orofacial nociceptive sensory processing. It has efferent connections to brain structures associated with nociception and cardiorespiratory functions. This study aimed at determining the function of the Pa5 on the cardiovascular component of the somatosensory reflex (SSR) to sciatic nerve stimulation (SNS) in paralyzed and artificially-ventilated rats following Pa5 chemical lesions (ibotenic acid), synaptic transmission blockade (CoCl(2)), local anaesthetics (lidocaine) or desensitization of primary afferent fibers (capsaicin). The pressor response to sciatic nerve stimulation at 0.6 mA and 20 Hz (14+/-1 mm Hg) was strongly attenuated by contra- (-80%) or bilateral (-50%) paratrigeminal nucleus lesions. Ipsilateral Pa5 lesions only attenuated the response to 0.1 mA, 20 Hz SNS (-55%). Cobalt chloride or lidocaine injected in the contralateral paratrigeminal nucleus also attenuated the SSR. In capsaicin-treated animals, the pressor responses to 0.1 mA were abolished, whereas the responses to SNS at 0.6 mA were increased from 65 to 100% depending on the stimulus frequency. The paratrigeminal nucleus receives both, excitatory and inhibitory components; the later apparently involving capsaicin-sensitive fiber inputs mostly to the ipsilateral site whereas the capsaicin insensitive excitatory components that respond to high or low frequency stimulation, respectively, target the contralateral and ipsilateral sites. Thus, the paratrigeminal nucleus mediates excitatory and inhibitory components of the somatosensory reflex, representing a primary synapse site in the brain for nociceptive inputs from the sciatic innervation field.


Assuntos
Vias Aferentes/fisiologia , Pressão Sanguínea/fisiologia , Bulbo/fisiologia , Nociceptores/fisiologia , Nervo Isquiático/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , Animais , Capsaicina/farmacologia , Denervação , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Lateralidade Funcional/fisiologia , Mediadores da Inflamação/farmacologia , Masculino , Bulbo/anatomia & histologia , Inibição Neural/fisiologia , Dor/fisiopatologia , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Wistar , Reflexo/fisiologia , Transmissão Sináptica/fisiologia , Núcleo Espinal do Trigêmeo/anatomia & histologia , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA