Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(suppl 2): e20220809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909607

RESUMO

Bartonella are rodent-borne bacteria that cause varied human etiologies. Studies on synanthropic rodents are rare, causing gaps in epidemiological knowledge. We tested bloodclot samples from 79 rats from an urban slum in Salvador, Brazil through PCR targeting gltA gene. Nine samples (11.4%) were positive: six had 100% identity with Bartonella sp. isolate JF429580 and 99.5% with B. queenslandensis strain AUST/NH8; three were 100% identical to isolate JF429532 and 99.7% to B. tribocorum. This is the second report on urban rat Bartonella indicating bacterial circulation at detectable rates. Its presence in rats from vulnerable human settlements demands public health attention.


Assuntos
Bartonella , Humanos , Ratos , Animais , Bartonella/genética , Reservatórios de Doenças , Brasil , Áreas de Pobreza , Roedores/microbiologia
2.
J Wildl Dis ; 58(3): 646-651, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35737954

RESUMO

The Borrelia genus comprises vector-borne, spirochete bacteria infecting vertebrates worldwide. We characterized a novel relapsing fever Borrelia species from a desert cottontail (Syvilagus audubonii) from New Mexico, US, using an established multilocus sequence analysis approach. Phylogenetic analysis of the flagellin gene (flaB) and four other protein-coding loci (clpX, pepX, recG, rplB) grouped the novel Borrelia species with hard tick relapsing fever borreliae Borrelia lonestari, Borrelia theileri, and Borrelia miyamotoi. The identity of the vectors and other vertebrate hosts, geographic distribution, and zoonotic potential of this novel Borrelia species deserve further investigation.


Assuntos
Borrelia , Febre Recorrente , Animais , Borrelia/genética , New Mexico , Filogenia , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Febre Recorrente/veterinária
3.
Pathog Glob Health ; 116(3): 185-192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34338622

RESUMO

Big cities of Argentina are characterized by a strong social and economic fragmentation. This context enables the presence of urban rodents in close contact to the human population, mostly in the peripheral areas of the cities. Urban rodents can harbor a large variety of zoonotic pathogens. The aim of this study was to molecularly characterize Leptospira spp. and Bartonella spp. in urban rodents from the area of Gran La Plata, Buenos Aires province, Argentina. The species of urban rodents captured and tested were Rattus norvegicus, Rattus rattus, and Mus musculus. Leptospira interrogans and L. borgpetersenii were detected in R. norvegicus and M. musculus respectively. Bartonella spp. DNA was not detected in any of the kidney samples tested. No significant differences were observed between the prevalence of bacteria and rodent and environmental variables such as host sex, presence of stream and season by Generalized Linear Model analysis. These results confirm the role of urban rodents as infection sources of Leptospira spp., suggesting the need to implement public health measures to prevent the transmission of Leptospira spp. and other zoonotic pathogens from rodents to humans. Bartonella was not detected in this set of samples.


Assuntos
Bartonella , Leptospira , Doenças dos Roedores , Animais , Argentina/epidemiologia , Bartonella/genética , Leptospira/genética , Camundongos , Ratos , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/microbiologia , Roedores/microbiologia
4.
PLoS Negl Trop Dis ; 15(7): e0009517, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260585

RESUMO

BACKGROUND: In Peru, the information regarding sand fly vectors of leishmaniasis and bartonellosis in the Amazon region is limited. In this study, we carried out sand fly collections in Peruvian lowland and highland jungle areas using different trap type configurations and screened them for Leishmania and Bartonella DNA. METHODOLOGY/PRINCIPAL FINDINGS: Phlebotomine sand flies were collected in Peruvian Amazon jungle and inter Andean regions using CDC light trap, UV and color LED traps, Mosquito Magnet trap, BG Sentinel trap, and a Shannon trap placed outside the houses. Leishmania spp. screening was performed by kDNA PCR and confirmed by a nested cytochrome B gene (cytB) PCR. Bartonella spp. screening was performed by ITS PCR and confirmed by citrate synthase gene (gltA). The PCR amplicons were sequenced to identify Leishmania and Bartonella species. UV and Blue LED traps collected the highest average number of sand flies per hour in low jungle; UV, Mosquito Magnet and Shannon traps in high jungle; and Mosquito Magnet in inter Andean region. Leishmania guyanensis in Lutzomyia carrerai carrerai and L. naiffi in Lu. hirsuta hirsuta were identified based on cytB sequencing. Bartonella spp. related to Bartonella bacilliformis in Lu. whitmani, Lu. nevesi, Lu. hirsuta hirsuta and Lu. sherlocki, and a Bartonella sp. related to Candidatus B. rondoniensis in Lu. nevesi and Lu. maranonensis were identified based on gltA gene sequencing. CONCLUSIONS/SIGNIFICANCE: UV, Blue LED, Mosquito Magnet and Shannon traps were more efficient than the BG-Sentinel, Green, and Red LED traps. This is the first report of L. naiffi and of two genotypes of Bartonella spp. related to B. bacilliformis and Candidatus B. rondoniensis infecting sand fly species from the Amazon region in Peru.


Assuntos
Infecções por Bartonella/transmissão , Bartonella bacilliformis/isolamento & purificação , Controle de Insetos/métodos , Insetos Vetores/fisiologia , Leishmania/isolamento & purificação , Leishmaniose/transmissão , Phlebotomus/fisiologia , Animais , Infecções por Bartonella/microbiologia , Bartonella bacilliformis/classificação , Bartonella bacilliformis/genética , Humanos , Controle de Insetos/instrumentação , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Leishmania/classificação , Leishmania/genética , Leishmaniose/parasitologia , Peru , Phlebotomus/microbiologia , Phlebotomus/parasitologia
5.
PLoS One ; 15(12): e0244803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382847

RESUMO

Protozoan parasites of the genus Trypanosoma infect a broad diversity of vertebrates and several species cause significant illness in humans. However, understanding of the phylogenetic diversity, host associations, and infection dynamics of Trypanosoma species in naturally infected animals is incomplete. This study investigated the presence of Trypanosoma spp. in wild rodents and lagomorphs in northern New Mexico, United States, as well as phylogenetic relationships among these parasites. A total of 458 samples from 13 rodent and one lagomorph species collected between November 2002 and July 2004 were tested by nested PCR targeting the 18S ribosomal RNA gene (18S rRNA). Trypanosoma DNA was detected in 25.1% of all samples, with the highest rates of 50% in Sylvilagus audubonii, 33.1% in Neotoma micropus, and 32% in Peromyscus leucopus. Phylogenetic analysis of Trypanosoma sequences revealed five haplotypes within the subgenus Herpetosoma (T. lewisi clade). Focused analysis on the large number of samples from N. micropus showed that Trypanosoma infection varied by age class and that the same Trypanosoma haplotype could be detected in recaptured individuals over multiple months. This is the first report of Trypanosoma infections in Dipodomys ordii and Otospermophilus variegatus, and the first detection of a haplotype phylogenetically related to T. nabiasi in North America in S. audubonii. This study lends important new insight into the diversity of Trypanosoma species, their geographic ranges and host associations, and the dynamics of infection in natural populations.


Assuntos
Arvicolinae/parasitologia , Lagomorpha/parasitologia , Doenças dos Roedores/parasitologia , Trypanosoma/genética , Tripanossomíase/veterinária , Animais , New Mexico , Tripanossomíase/parasitologia
6.
Vector Borne Zoonotic Dis ; 20(7): 496-508, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32159462

RESUMO

Background and Objectives: Vector-borne bacterial diseases represent a substantial public health burden and rodents have been recognized as important reservoir hosts for many zoonotic pathogens. This study investigates bacterial pathogens in a small mammal community of the southwestern United States of America. Methods: A total of 473 samples from 13 wild rodent and 1 lagomorph species were tested for pathogens of public health significance: Bartonella, Brucella, Yersinia, Borrelia, Rickettsia spp., and Anaplasma phagocytophilum. Results: Three animals were positive for Yersinia pestis, and one Sylvilagus audubonii had a novel Borrelia sp. of the relapsing fever group. No Brucella, Rickettsia, or A. phagocytophilum infections were detected. Bartonella prevalence ranged between 0% and 87.5% by animal species, with 74.3% in the predominant Neotoma micropus and 78% in the second most abundant N. albigula. The mean duration of Bartonella bacteremia in mark-recaptured N. micropus and N. albigula was 4.4 months, ranging from <1 to 18 months, and differed among Bartonella genogroups. Phylogenetic analysis of the Bartonella citrate synthase gene (gltA) revealed 9 genogroups and 13 subgroups. Seven genogroups clustered with known or previously reported Bartonella species and strains while two were distant enough to represent new Bartonella species. We report, for the first time, the detection of Bartonella alsatica in North America in Sylvilagus audubonii and expand the known host range of Bartonella washoensis to include Otospermophilus variegatus. Interpretation and Conclusion: This work broadens our knowledge of the hosts and geographic range of bacterial pathogens that could guide future surveillance efforts and improves our understanding of the dynamics of Bartonella infection in wild small mammals.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Roedores/microbiologia , Roedores/microbiologia , Animais , Bactérias/classificação , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Humanos , Estudos Longitudinais , New Mexico/epidemiologia , Coelhos , Doenças dos Roedores/epidemiologia , Zoonoses
7.
Am J Trop Med Hyg ; 101(6): 1276-1281, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31674296

RESUMO

In the present study, we tested 391 fleas collected from guinea pigs (Cavia porcellus) (241 Pulex species, 110 Ctenocephalides felis, and 40 Tiamastus cavicola) and 194 fleas collected from human bedding and clothing (142 Pulex species, 43 C. felis, five T. cavicola, and four Ctenocephalides canis) for the presence of Bartonella DNA. We also tested 83 blood spots collected on Flinders Technology Associates (FTA) cards from guinea pigs inhabiting 338 Peruvian households. Bartonella DNA was detected in 81 (20.7%) of 391 guinea pig fleas, in five (2.6%) of 194 human fleas, and in 16 (19.3%) of 83 guinea pig blood spots. Among identified Bartonella species, B. rochalimae was the most prevalent in fleas (89.5%) and the only species found in the blood spots from guinea pigs. Other Bartonella species detected in fleas included B. henselae (3.5%), B. clarridgeiae (2.3%), and an undescribed Bartonella species (4.7%). Our results demonstrated a high prevalence of zoonotic B. rochalimae in households in rural areas where the research was conducted and suggested a potential role of guinea pigs as a reservoir of this bacterium.


Assuntos
Bartonella/isolamento & purificação , Reservatórios de Doenças/microbiologia , Sifonápteros/microbiologia , Zoonoses/microbiologia , Animais , Bartonella/genética , Infecções por Bartonella/microbiologia , Infecções por Bartonella/transmissão , Roupas de Cama, Mesa e Banho/parasitologia , Vestuário , Infestações por Pulgas , Cobaias/microbiologia , Peru , População Rural , Zoonoses/transmissão
8.
J Med Entomol ; 55(5): 1292-1298, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29860325

RESUMO

Few studies have been able to provide experimental evidence of the ability of fleas to maintain rodent-associated Bartonella infections and excrete these bacteria. These data are important for understanding the transmission cycles and prevalence of these bacteria in hosts and vectors. We used an artificial feeding approach to expose groups of the oriental rat flea (Xenopsylla cheopis Rothschild; Siphonaptera, Pulicidae) to rat blood inoculated with varying concentrations of Bartonella elizabethae Daly (Bartonellaceae: Rhizobiales). Flea populations were maintained by membrane feeding on pathogen-free bloodmeals for up to 13 d post infection. Individual fleas and pools of flea feces were tested for the presence of Bartonella DNA using molecular methods (quantitative and conventional polymerase chain reaction [PCR]). The threshold number of Bartonellae required in the infectious bloodmeal for fleas to be detected as positive was 106 colony-forming units per milliliter (CFU/ml). Individual fleas were capable of harboring infections for at least 13 d post infection and continuously excreted Bartonella DNA in their feces over the same period. This experiment demonstrated that X. cheopis are capable of acquiring and excreting B. elizabethae over several days. These results will guide future work to model and understand the role of X. cheopis in the natural transmission cycle of rodent-borne Bartonella species. Future experiments using this artificial feeding approach will be useful for examining the horizontal transmission of B. elizabethae or other rodent-associated Bartonella species to naïve hosts and for determining the viability of excreted bacteria.


Assuntos
Bartonella/fisiologia , DNA Bacteriano/análise , Insetos Vetores/microbiologia , Xenopsylla/microbiologia , Animais , Fezes/química
9.
J Med Entomol ; 55(1): 237-241, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29329460

RESUMO

Bat bugs (Cimex adjunctus Barber) (Hemiptera: Cimicidae) collected from big brown bats (Eptesicus fuscus Palisot de Beauvoir) in Colorado, United States were assessed for the presence of Bartonella, Brucella, and Yersinia spp. using molecular techniques. No evidence of Brucella or Yersinia infection was found in the 55 specimens collected; however, 4/55 (7.3%) of the specimens were positive for Bartonella DNA. Multi-locus characterization of Bartonella DNA shows that sequences in bat bugs are phylogenetically related to other Bartonella isolates and sequences from European bats.


Assuntos
Bartonella/isolamento & purificação , Percevejos-de-Cama/microbiologia , Brucella/isolamento & purificação , Quirópteros/parasitologia , Yersinia/isolamento & purificação , Animais , Proteínas de Bactérias/análise , Bartonella/classificação , Brucella/classificação , Colorado , DNA Bacteriano/análise , Filogenia , Yersinia/classificação
10.
J Wildl Dis ; 54(1): 26-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059012

RESUMO

: The presence of keystone species can influence disease dynamics through changes in species diversity and composition of vector and host communities. In this study, we compared 1) the diversity of small mammals; 2) the prevalence, abundance, and intensity of arthropod vectors; and 3) the prevalence of Yersinia pestis, Francisella tularensis, and Bartonella spp. in vectors, between two grassland communities of northern Sonora, Mexico, one with (La Mesa [LM]) and one without (Los Fresnos [LF]) black-tailed prairie dogs ( Cynomys ludovicianus). The mammal community in LF exhibited higher species richness and diversity than LM, and species composition was different between the two communities. Flea species richness, prevalence, abundance, and intensity, were higher in LM than in LF. The most abundant fleas were Oropsylla hirsuta and Pulex simulans, and C. ludovicianus was the host with the highest flea intensity and richness. There was no serologic evidence for the presence of Y. pestis and F. tularensis in any community, but Bartonella spp. was present in 18% of the total samples. Some specificity was observed between Bartonella species, flea species, and mammal species. Although prairie dogs can indirectly affect the diversity and abundance of hosts and vectors, dynamics of vector-borne diseases at these spatial and temporal scales may be more dependent on the vector and pathogen specificity.


Assuntos
Bactérias/isolamento & purificação , Insetos Vetores/microbiologia , Roedores/microbiologia , Sciuridae/microbiologia , Sifonápteros/classificação , Distribuição Animal , Animais , Biodiversidade , Reservatórios de Doenças , Ectoparasitoses/epidemiologia , Ectoparasitoses/veterinária , Pradaria , México , Sifonápteros/microbiologia , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA