Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4205, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806460

RESUMO

Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles. Here we develop a dynamic modelling approach for infectious diseases that explicitly models both connectivity via human movement and environmental suitability interactions. We apply it to better understand recently observed (1995-2019) patterns as well as predict past unobserved (1983-2000) and future (2020-2039) spread of dengue in Mexico and Brazil. We find that these models can accurately reconstruct long-term spread pathways, determine historical origins, and identify specific routes of invasion. We find early dengue invasion is more heavily influenced by environmental factors, resulting in patchy non-contiguous spread, while short and long-distance connectivity becomes more important in later stages. Our results have immediate practical applications for forecasting and containing the spread of dengue and emergence of new serotypes. Given current and future trends in human mobility, climate, and zoonotic spillover, understanding the interplay between connectivity and environmental suitability will be increasingly necessary to contain emerging and re-emerging pathogens.


Assuntos
Dengue , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Humanos , Brasil/epidemiologia , México/epidemiologia , Animais , Vírus da Dengue/fisiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/transmissão , Meio Ambiente , Migração Humana , Aedes/virologia
2.
PLoS Negl Trop Dis ; 17(9): e0011169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672514

RESUMO

BACKGROUND: Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. METHODOLOGY/PRINCIPAL FINDINGS: Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico's geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration.


Assuntos
Aedes , Arbovírus , Humanos , Animais , México/epidemiologia , Arbovírus/genética , América Central/epidemiologia , América do Norte
3.
Elife ; 122023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498057

RESUMO

Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated during the first year of local transmission. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in Mexico. Lineages B.1.1.222 and B.1.1.519 exhibited similar dynamics, constituting clades that likely originated in Mexico and persisted for >12 months. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. For the largest B.1.617.2 clades, we further explored viral lineage movements across Mexico. Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.


Assuntos
COVID-19 , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Evolução Biológica , Filogenia
4.
Epidemics ; 41: 100627, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099708

RESUMO

SARS-CoV-2 case data are primary sources for estimating epidemiological parameters and for modelling the dynamics of outbreaks. Understanding biases within case-based data sources used in epidemiological analyses is important as they can detract from the value of these rich datasets. This raises questions of how variations in surveillance can affect the estimation of epidemiological parameters such as the case growth rates. We use standardised line list data of COVID-19 from Argentina, Brazil, Mexico and Colombia to estimate delay distributions of symptom-onset-to-confirmation, -hospitalisation and -death as well as hospitalisation-to-death at high spatial resolutions and throughout time. Using these estimates, we model the biases introduced by the delay from symptom-onset-to-confirmation on national and state level case growth rates (rt) using an adaptation of the Richardson-Lucy deconvolution algorithm. We find significant heterogeneities in the estimation of delay distributions through time and space with delay difference of up to 19 days between epochs at the state level. Further, we find that by changing the spatial scale, estimates of case growth rate can vary by up to 0.13 d-1. Lastly, we find that states with a high variance and/or mean delay in symptom-onset-to-diagnosis also have the largest difference between the rt estimated from raw and deconvolved case counts at the state level. We highlight the importance of high-resolution case-based data in understanding biases in disease reporting and how these biases can be avoided by adjusting case numbers based on empirical delay distributions. Code and openly accessible data to reproduce analyses presented here are available.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Surtos de Doenças , Brasil/epidemiologia , Hospitalização
5.
PLoS Negl Trop Dis ; 16(1): e0010019, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995277

RESUMO

BACKGROUND: Yellow fever (YF) is an arboviral disease which is endemic to Brazil due to a sylvatic transmission cycle maintained by infected mosquito vectors, non-human primate (NHP) hosts, and humans. Despite the existence of an effective vaccine, recent sporadic YF epidemics have underscored concerns about sylvatic vector surveillance, as very little is known about their spatial distribution. Here, we model and map the environmental suitability of YF's main vectors in Brazil, Haemagogus spp. and Sabethes spp., and use human population and NHP data to identify locations prone to transmission and spillover risk. METHODOLOGY/PRINCIPAL FINDINGS: We compiled a comprehensive set of occurrence records on Hg. janthinomys, Hg. leucocelaenus, and Sabethes spp. from 1991-2019 using primary and secondary data sources. Linking these data with selected environmental and land-cover variables, we adopted a stacked regression ensemble modelling approach (elastic-net regularized GLM, extreme gradient boosted regression trees, and random forest) to predict the environmental suitability of these species across Brazil at a 1 km x 1 km resolution. We show that while suitability for each species varies spatially, high suitability for all species was predicted in the Southeastern region where recent outbreaks have occurred. By integrating data on NHP host reservoirs and human populations, our risk maps further highlight municipalities within the region that are prone to transmission and spillover. CONCLUSIONS/SIGNIFICANCE: Our maps of sylvatic vector suitability can help elucidate potential locations of sylvatic reservoirs and be used as a tool to help mitigate risk of future YF outbreaks and assist in vector surveillance. Furthermore, at-risk regions identified from our work could help disease control and elucidate gaps in vaccination coverage and NHP host surveillance.


Assuntos
Culicidae/virologia , Mosquitos Vetores/virologia , Febre Amarela/transmissão , Vírus da Febre Amarela/fisiologia , Animais , Brasil/epidemiologia , Interações Hospedeiro-Patógeno , Especificidade da Espécie , Febre Amarela/epidemiologia , Febre Amarela/virologia
6.
Virus Evol ; 7(2): veab051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527281

RESUMO

Characterisation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic diversity through space and time can reveal trends in virus importation and domestic circulation and permit the exploration of questions regarding the early transmission dynamics. Here, we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the coronavirus-19 pandemic. We generated and analysed 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylogeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions, with differential degrees of persistence and national dissemination.

7.
Nat Commun ; 12(1): 5379, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508077

RESUMO

Probabilistic forecasts play an indispensable role in answering questions about the spread of newly emerged pathogens. However, uncertainties about the epidemiology of emerging pathogens can make it difficult to choose among alternative model structures and assumptions. To assess the potential for uncertainties about emerging pathogens to affect forecasts of their spread, we evaluated the performance 16 forecasting models in the context of the 2015-2016 Zika epidemic in Colombia. Each model featured a different combination of assumptions about human mobility, spatiotemporal variation in transmission potential, and the number of virus introductions. We found that which model assumptions had the most ensemble weight changed through time. We additionally identified a trade-off whereby some individual models outperformed ensemble models early in the epidemic, but on average the ensembles outperformed all individual models. Our results suggest that multiple models spanning uncertainty across alternative assumptions are necessary to obtain robust forecasts for emerging infectious diseases.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Epidemias/estatística & dados numéricos , Monitoramento Epidemiológico , Infecção por Zika virus/epidemiologia , Colômbia/epidemiologia , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Previsões/métodos , Humanos , Modelos Estatísticos , Análise Espaço-Temporal , Incerteza
8.
Science ; 372(6544): 815-821, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33853970

RESUMO

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Brasil/epidemiologia , Monitoramento Epidemiológico , Genoma Viral , Genômica , Humanos , Modelos Teóricos , Epidemiologia Molecular , Mutação , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga Viral
9.
medRxiv ; 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33851177

RESUMO

Characterisation of SARS-CoV-2 genetic diversity through space and time can reveal trends in virus importation and domestic circulation, and permit the exploration of questions regarding the early transmission dynamics. Here we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the COVID-19 pandemic. We generate and analyse 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylgeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions (NPIs), with differential degrees of persistence and national dissemination.

10.
Nat Commun ; 12(1): 151, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420058

RESUMO

Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises.


Assuntos
Febre de Chikungunya/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Dengue/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Doenças Endêmicas/estatística & dados numéricos , Infecção por Zika virus/epidemiologia , Adolescente , Aedes/virologia , Animais , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Criança , Pré-Escolar , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Dengue/prevenção & controle , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Surtos de Doenças/prevenção & controle , República Dominicana/epidemiologia , Doenças Endêmicas/prevenção & controle , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Controle de Mosquitos , Mosquitos Vetores/virologia , Análise Espaço-Temporal , Adulto Jovem , Zika virus/isolamento & purificação , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA