Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 56(7): 1225-1232, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377006

RESUMO

BACKGROUND: Resistance training confers numerous health benefits that are mediated in part by circulating factors. Toward an enhanced molecular understanding, there is growing interest in a class of signaling biomarkers called extracellular vesicles (EV). EVs support physiological adaptations to exercise by transporting their cargo (e.g., microRNA (miRNA)) to target cells. Previous studies of changes in EV cargo have focused on aerobic exercise, with limited data examining the effects of resistance exercise. We examined the effect of acute resistance exercise on circulating EV miRNAs and their predicted target pathways. METHODS: Ten participants (5 men; age, 26.9 ± 5.5 yr; height, 173.4 ± 10.5 cm; body mass, 74.0 ± 11.1 kg; body fat, 25.7% ± 11.6%) completed an acute heavy resistance exercise test (AHRET) consisting of six sets of 10 repetitions of back squats using 75% one-repetition maximum. Pre-/post-AHRET, EVs were isolated from plasma using size exclusion chromatography, and RNA sequencing was performed. Differentially expressed miRNAs between pre- and post-AHRET EVs were analyzed using Ingenuity Pathway Analysis to predict target messenger RNAs and their target biological pathways. RESULTS: Overall, 34 miRNAs were altered by AHRET ( P < 0.05), targeting 4895 mRNAs, with enrichment of 175 canonical pathways ( P < 0.01), including 12 related to growth/metabolism (p53, IGF-I, STAT3, PPAR, JAK/STAT, growth hormone, WNT/ß-catenin, ERK/MAPK, AMPK, mTOR, and PI3K/AKT) and 8 to inflammation signaling (TGF-ß, IL-8, IL-7, IL-3, IL-6, IL-2, IL-17, IL-10). CONCLUSIONS: Acute resistance exercise alters EV miRNAs targeting pathways involved in growth, metabolism, and immune function. Circulating EVs may serve as significant adaptive signaling molecules influenced by exercise training.


Assuntos
Vesículas Extracelulares , MicroRNAs , Treinamento Resistido , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Adulto , Estudos Prospectivos , Feminino , MicroRNAs/sangue , MicroRNAs/metabolismo , Adulto Jovem , Transdução de Sinais , MicroRNA Circulante/sangue
2.
J Athl Train ; 54(5): 497-504, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074634

RESUMO

CONTEXT: Ankle injury is one of the most common conditions in athletics and military activities. Strength asymmetry (SA) and imbalance may represent a risk factor for injury, but past investigations have produced ambiguous conclusions. Perhaps one explanation for this ambiguity is the fact that these authors used univariate models to predict injury. OBJECTIVE: To evaluate the predictive utility of SA and imbalance calculations for ankle injury in univariate and multivariate prediction models. DESIGN: Prospective cohort study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 140 male US Air Force Special Forces. MAIN OUTCOME MEASURE(S): Baseline testing consisted of body composition, isometric strength, and aerobic and anaerobic capacity. A clinician conducted medical chart reviews 365 days posttesting to document the incidence of ankle injury. Strength asymmetries were calculated based on the equations most prevalent in the literature along with known physiological predictors of injury in the military: age, height, weight, body composition, and aerobic capacity. Simple logistic regression was conducted using each predictor, and backward stepwise logistic regression was conducted with each equation method and the physiological predictors entered initially into the model. RESULTS: Strength asymmetry or imbalance or both, as a univariate predictor, was not able to predict ankle injury 365 days posttesting. Body mass (P = .01) and body mass index (P = .01) significantly predicted ankle injury. Strength asymmetry or imbalance or both significantly predicted ankle injury when considered with body mass (P = .002-.008). CONCLUSIONS: As a univariate predictor, SA did not predict ankle injury. However, SA contributed significantly to predicting ankle injury in a multivariate model using body mass. Interpreting SA and imbalance in the presence of other physiological variables can help elucidate the risk of ankle injury.


Assuntos
Traumatismos do Tornozelo , Traumatismos em Atletas , Militares , Força Muscular/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Traumatismos do Tornozelo/epidemiologia , Traumatismos do Tornozelo/etiologia , Traumatismos do Tornozelo/fisiopatologia , Traumatismos do Tornozelo/prevenção & controle , Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/fisiopatologia , Traumatismos em Atletas/prevenção & controle , Índice de Massa Corporal , Feminino , Humanos , Incidência , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Esportes/fisiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA