Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genome ; 67(7): 223-232, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742652

RESUMO

The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.


Assuntos
Aves , Cromossomos Artificiais Bacterianos , Cromossomos , Evolução Molecular , Hibridização in Situ Fluorescente , Animais , Cromossomos Artificiais Bacterianos/genética , Aves/genética , Cromossomos/genética , Cariótipo , Cariotipagem , Filogenia , Galinhas/genética
2.
BMC Ecol Evol ; 24(1): 51, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654159

RESUMO

BACKGROUND: Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS: From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION: The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.


Assuntos
Paleógnatas , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Paleógnatas/genética , Masculino , Feminino , Evolução Molecular , Repetições de Microssatélites/genética , Evolução Biológica , Hibridização Genômica Comparativa
3.
Cytogenet Genome Res ; 164(1): 43-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547850

RESUMO

INTRODUCTION: Passeriformes has the greatest species diversity among Neoaves, and the Tyrannidae is the richest in this order with about 600 valid species. The diploid number of this family remains constant, ranging from 2n = 76 to 84, but the chromosomal morphology varies, indicating the occurrence of different chromosomal rearrangements. Cytogenetic studies of the Tyrannidae remain limited, with approximately 20 species having been karyotyped thus far. This study aimed to describe the karyotypes of two species from this family, Myiopagis viridicata and Sirystes sibilator. METHODS: Skin biopsies were taken from each individual to establish fibroblast cell cultures and to obtain chromosomal preparations using the standard methodology. The chromosomal distribution of constitutive heterochromatin was investigated by C-banding, while the location of simple repetitive sequences (SSRs), 18S rDNA, and telomeric sequences was found through fluorescence in situ hybridization. RESULTS: The karyotypes of both species are composed of 2n = 80. The 18S rDNA probes hybridized into two pairs of microchromosomes in M. viridicata, but only a single pair in S. sibilator. Only the telomeric portions of each chromosome in both species were hybridized by the telomere sequence probes. Most of the SSRs were found accumulated in the centromeric and telomeric regions of several macro- and microchromosomes in both species, which likely correspond to the heterochromatin-rich regions. CONCLUSION: Although both species analyzed showed a conserved karyotype organization (2n = 80), our study revealed significant differences in their chromosomal architecture, rDNA distribution, and SSR accumulation. These findings were discussed in the context of the evolution of Tyrannidae karyotypes.


Assuntos
Bandeamento Cromossômico , Variação Genética , Heterocromatina , Hibridização in Situ Fluorescente , Cariótipo , Telômero , Animais , Telômero/genética , Heterocromatina/genética , Passeriformes/genética , Cariotipagem , Masculino , RNA Ribossômico 18S/genética , Análise Citogenética , Sequências Repetitivas de Ácido Nucleico/genética , Feminino , DNA Ribossômico/genética , Citogenética/métodos
4.
Genome ; 67(4): 109-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316150

RESUMO

Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Heterocromatina/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais/genética , Cariótipo , Aves/genética , Evolução Molecular
5.
Genes (Basel) ; 15(2)2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397247

RESUMO

Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Aves/genética , Cromossomos Sexuais , Sequências Repetitivas de Ácido Nucleico
6.
PLoS One ; 18(11): e0294776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011093

RESUMO

Pelecaniformes is an order of waterbirds that exhibit diverse and distinct morphologies. Ibis, heron, pelican, hammerkop, and shoebill are included within the order. Despite their fascinating features, the phylogenetic relationships among the families within Pelecaniformes remain uncertain and pose challenges due to their complex evolutionary history. Their karyotypic evolution is another little-known aspect. Therefore, to shed light on the chromosomal rearrangements that have occurred during the evolution of Pelecaniformes, we have used whole macrochromosome probes from Gallus gallus (GGA) to show homologies on three species with different diploid numbers, namely Cochlearius cochlearius (2n = 74), Eudocimus ruber (2n = 66), and Syrigma sibilatrix (2n = 62). A fusion between GGA6 and GGA7 was found in C. cochlearius and S. sibilatrix. In S. sibilatrix the GGA8, GGA9 and GGA10 hybridized to the long arms of biarmed macrochromosomes, indicating fusions with microchromosomes. In E. ruber the GGA7 and GGA8 hybridized to the same chromosome pair. After comparing our painting results with previously published data, we show that distinct chromosomal rearrangements have occurred in different Pelecaniformes lineages. Our study provides new insight into the evolutionary history of Pelecaniformes and the chromosomal changes involving their macrochromosomes and microchromosomes that have taken place in different species within this order.


Assuntos
Galinhas , Coloração Cromossômica , Humanos , Animais , Filogenia , Cariotipagem , Cariótipo , Galinhas/genética , Aberrações Cromossômicas , Evolução Molecular
7.
Biology (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626998

RESUMO

In this work, we trace the dynamics of satellite DNAs (SatDNAs) accumulation and elimination along the pathway of W chromosome differentiation using the well-known Triportheus fish model. Triportheus stands out due to a conserved ZZ/ZW sex chromosome system present in all examined species. While the Z chromosome is conserved in all species, the W chromosome is invariably smaller and exhibits differences in size and morphology. The presumed ancestral W chromosome is comparable to that of T. auritus, and contains 19 different SatDNA families. Here, by examining five additional Triportheus species, we showed that the majority of these repetitive sequences were eliminated as speciation was taking place. The W chromosomes continued degeneration, while the Z chromosomes of some species began to accumulate some TauSatDNAs. Additional species-specific SatDNAs that made up the heterochromatic region of both Z and W chromosomes were most likely amplified in each species. Therefore, the W chromosomes of the various Triportheus species have undergone significant evolutionary changes in a short period of time (15-25 Myr) after their divergence.

8.
Animals (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570312

RESUMO

Hybridization between species with different evolutionary trajectories can be a powerful threat to wildlife conservation. Anthropogenic activities, such as agriculture and livestock, have led to the degradation and loss of natural habitats for wildlife. Consequently, the incidence of interspecific hybridization between wild and domestic species has increased, although cases involving species of different genera are rare. In Vacaria, a Southern city in Brazil, a female canid with a strange phenotype, which had characteristics between the phenotype of the domestic dog (Canis familiaris) and that of the pampas fox (Lycalopex gymnocercus), was found. Our analysis suggests that the animal is a hybrid between a domestic dog and a pampas fox, but future studies are necessary to investigate additional cases of this hybridization in nature. This finding worries for the conservation of wild canids in South America, especially concerning Lycalopex species. Hybridization with the domestic dog may have harmful effects on pampas fox populations due to the potential for introgression and disease transmission by the domestic dog. Therefore, future studies to explore the consequences of hybridization on genetics, ecology, and behavior of wild populations will be essential to improve the conservation of this species.

9.
Chromosoma ; 132(4): 289-303, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493806

RESUMO

Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Coloração Cromossômica , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Cariótipo , Evolução Molecular
10.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240350

RESUMO

Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.


Assuntos
Genoma , Genômica , Animais , Peixes/genética , Cariótipo , Análise Citogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA