Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2405632121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150783

RESUMO

Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant Arabidopsis thaliana, APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of Arabidopsis genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.


Assuntos
Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Luz , Poliadenilação , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Transcription ; 11(3-4): 117-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32748694

RESUMO

Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance.


Assuntos
Arabidopsis/genética , Cromatina/genética , Estágios do Ciclo de Vida/genética , Luz , RNA Polimerase II/genética , Transcrição Gênica/genética , Processamento Alternativo/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , RNA Polimerase II/metabolismo
3.
Mol Cell ; 73(5): 1066-1074.e3, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661982

RESUMO

Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts. Here, we show that light promotes RNA polymerase II (Pol II) elongation in the affected genes, whereas in darkness, elongation is lower. These changes in transcription are consistent with elongation causing the observed changes in alternative splicing, as revealed by different drug treatments and genetic evidence. The light control of splicing and elongation is abolished in an Arabidopsis mutant defective in the transcription factor IIS (TFIIS). We report that the chloroplast control of nuclear alternative splicing in plants responds to the kinetic coupling mechanism found in mammalian cells, providing unique evidence that coupling is important for a whole organism to respond to environmental cues.


Assuntos
Processamento Alternativo/efeitos da radiação , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Plantas Geneticamente Modificadas/efeitos da radiação , RNA de Plantas/efeitos da radiação , Elongação da Transcrição Genética/efeitos da radiação , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escuridão , Histonas/genética , Histonas/metabolismo , Cinética , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA