Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417586

RESUMO

Mango (Mangifera indica L.) is an important commercial fruit that shows a noticeable loss of firmness during ripening. Polygalacturonase (PG, E.C. 3.2.1.15) is a crucial enzyme for cell wall loosening during fruit ripening since it solubilizes pectin and its activity correlates with fruit softening. Mango PGs were mapped to a genome draft using seventeen PGs found in mango transcriptomes and 48 bonafide PGs were identified. The phylogenetic analysis suggests that they are related to Citrus sinensis, which may indicate a recent evolutive divergence and related functions with orthologs in the tree. Gene expression analysis for nine PGs showed differential expression for them during post-harvest fruit ripening, MiPG21-1, MiPG14, MiPG69-1, MiPG17, MiPG49, MiPG23-3, MiPG22-7, and MiPG16 were highly up-regulated. PG enzymatic activity also increased during maturation and these results correlate with the loss of firmness observed in mango during post-harvest ripening, between the ethylene production burst and the climacteric peak. The analysis of PGs promoter regions identified regulatory sequences associated to ripening such as MADS-box, ethylene regulation like ethylene insensitive 3 (EIN3) factors, APETALA2-like and ethylene response element factors. During mango fruit ripening the action of at least these nine PGs contribute to softening, and their expression is regulated at the transcriptional level. The prediction of the tridimensional structure of some PGs showed a conserved parallel beta-helical fold related to polysaccharide hydrolysis and a modular architecture, where exons correspond to structural elements. Further biotechnological approaches could target specific softening-related PGs to extend mango post-harvest shelf life.

2.
Front Plant Sci ; 6: 62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741352

RESUMO

Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "Kent" was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like "cell wall," "carbohydrate catabolic process" and "starch and sucrose metabolic process" among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening.

3.
PLoS One ; 3(10): e3311, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18827930

RESUMO

Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.


Assuntos
Cacau/genética , Genética Populacional , Geografia , Brasil , DNA de Plantas/genética , Eletroforese Capilar , Repetições de Microssatélites/genética , Família Multigênica , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA