Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(3): 2385-2400, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750346

RESUMO

The overwhelming use of PET plastic in various day-to-day activities led to the voluminous increase in PET waste and growing environmental hazards. A plethora of methods have been used that are associated with secondary pollutants. Therefore, microbial degradation of PET provides a sustainable approach due to its versatile metabolic diversity and capacity. The present work highlights the cutinase enzyme's role in PET degradation. This study focuses on the bacterial cutinases homologs screened from 43 reported phylum of bacteria. The reported bacterial cutinases for plastic degradation have been chosen as reference sequences, and 917 sequences have shown homology across the bacterial phyla. The dienelactone hydrolase (DLH) domain was identified for attaining specificity towards PET binding in 196 of 917 sequences. Various computational tools have been used for the physicochemical characterization of 196 sequences. The analysis revealed that most selected sequences are hydrophilic, extracellular, and thermally stable. Based on this analysis, 17 sequences have been further pursued for three-dimensional structure prediction and validation. The molecular docking studies of 17 selected sequences revealed efficient PET binding with the three sequences derived from the phylum Bacteroidota, the lowest binding energy of -5.9 kcal/mol, Armatimonadota, and Nitrososphaerota with -5.8 kcal/mol. The two enzyme sequences retrieved from the phylum Bacteroidota and Armatimonadota are metagenomically derived. Therefore, the present studies concluded that there is a high probability of finding cutinase homologs in various environmental resources that can be further explored for PET degradation.


Assuntos
Bactérias , Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Simulação de Acoplamento Molecular , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/química , Bactérias/enzimologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Especificidade por Substrato , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Biodegradação Ambiental , Simulação por Computador , Filogenia
2.
In. Faculty of Medical Sciences, The University of the West Indies. 23rd Annual Student Research Day. Port of Sapin, Faculty of Medical Sciences,The University of the West Indies, October 14, 2021. .
Não convencional em Inglês | MedCarib | ID: biblio-1337903

RESUMO

Mental health of young adults has become a relevant matter amidst the COVID-19 pandemic. Individuals employ various coping mechanisms to deal with their stresses and mental health challenges. The type of coping strategy determines the outcomes of their Health-related Quality of Life (HRQo). This study investigated the stressors of students at the University of the West Indies, St Augustine Campus (UWI-STA) and how their coping mechanisms influenced their HRQoL during the COVID-19 pandemic


Assuntos
Humanos , COVID-19 , Qualidade de Vida , Trinidad e Tobago , Saúde Mental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA