Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ISME J ; 17(3): 354-370, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36536072

RESUMO

The substrates of the Brazilian campos rupestres, a grassland ecosystem, have extremely low concentrations of phosphorus and nitrogen, imposing restrictions to plant growth. Despite that, this ecosystem harbors almost 15% of the Brazilian plant diversity, raising the question of how plants acquire nutrients in such a harsh environment. Here, we set out to uncover the taxonomic profile, the compositional and functional differences and similarities, and the nutrient turnover potential of microbial communities associated with two plant species of the campos rupestres-dominant family Velloziaceae that grow over distinct substrates (soil and rock). Using amplicon sequencing data, we show that, despite the pronounced composition differentiation, the plant-associated soil and rock communities share a core of highly efficient colonizers that tend to be highly abundant and is enriched in 21 bacterial families. Functional investigation of metagenomes and 522 metagenome-assembled genomes revealed that the microorganisms found associated to plant roots are enriched in genes involved in organic compound intake, and phosphorus and nitrogen turnover. We show that potential for phosphorus transport, mineralization, and solubilization are mostly found within bacterial families of the shared microbiome, such as Xanthobacteraceae and Bryobacteraceae. We also detected the full repertoire of nitrogen cycle-related genes and discovered a lineage of Isosphaeraceae that acquired nitrogen-fixing potential via horizontal gene transfer and might be also involved in nitrification via a metabolic handoff association with Binataceae. We highlight that plant-associated microbial populations in the campos rupestres harbor a genetic repertoire with potential to increase nutrient availability and that the microbiomes of biodiversity hotspots can reveal novel mechanisms of nutrient turnover.


Assuntos
Ecossistema , Microbiota , Brasil , Microbiologia do Solo , Biodiversidade , Bactérias/genética , Bactérias/metabolismo , Plantas/metabolismo , Solo/química , Fósforo/metabolismo , Nitrogênio/metabolismo
2.
Antonie Van Leeuwenhoek ; 114(12): 1991-2002, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541621

RESUMO

The rod-shaped and Gram-stain-negative bacterial strain 16FT, isolated from an air sample collected at King George Island, maritime Antarctica, was investigated to determine its taxonomic status. Strain 16FT is strictly aerobic, catalase positive, oxidase positive and non-motile. Strain 16FT hydrolyses casein, lecithin, Tween 20, 60 and 80, but not aesculin, gelatin and starch. Growth of strain 16FT is observed at 0-20 °C (optimum 10 °C), pH 5.0-8.0 (optimum pH 6.0), and in the presence of 0-2.0% NaCl (optimum 0.5%). The predominant menaquinone is MK-6, and the major fatty acids comprise anteiso-C15:0 and iso-C15:0. The major polar lipids are phosphatidylethanolamine, ornithine lipid OL2, unidentified phospholipid PL1 and the unidentified lipids L3 and L6 lacking functional groups. The DNA G + C content based on the draft genome sequence is 32.3 mol%. Sequence analysis of the 16S rRNA gene indicates the highest similarity to Kaistella palustris 3A10T (95.4%), Kaistella chaponensis Sa 1147-06 T (95.2%), Kaistella antarctica AT1013T (95.1%), Kaistella carnis NCTC 13525 T (95.1%) and below 95.0% to other species with validly published names. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences places strain 16FT in a distinct branch, indicating a separate lineage within the family Weeksellaceae. Based on the data from our polyphasic approach, 16FT represents a novel species of a new genus, for which the name Frigoriflavimonas asaccharolytica gen. nov, sp. nov. is proposed. The type strain is 16FT (= CCM 8975 T = CGMCC No.1.16844 T).


Assuntos
Bacteroidetes , Esterases , Peptídeo Hidrolases , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Bacteroidetes/enzimologia , Bacteroidetes/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2
3.
Artigo em Inglês | MEDLINE | ID: mdl-34152267

RESUMO

A rod-shaped and Gram-stain-negative bacterial strain 9AT, was isolated from an air sample collected at King George Island, maritime Antarctica. Phylogenetic analysis based on 16S rRNA gene sequence reveals that strain 9AT belongs to the genus Hymenobacter and shows the highest similarity to Hymenobacter coccineus CCM 8649T (96.8 %). The DNA G+C content based on the draft genome sequence is 64.9 mol%. Strain 9AT is strictly aerobic, psychrophilic, catalase-positive, oxidase-positive and non-motile. Growth is observed at 0-20 °C (optimum 10 °C), pH 6.0-8.0 (optimum pH 7.0), and in the absence of NaCl. The predominant menaquinone of strain 9AT is MK-7 and the major fatty acids comprise Summed Feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 25.2 %), iso-C15 : 0 (23.2 %), C16 : 1 ω5c (11.6 %), Summed Feature 4 (anteiso-C17 : 1 B/iso-C17 : 1 I) (9.6 %) and anteiso-C15 : 0 (9.6 %). The polar lipid profile consists of the major lipid phosphatidylethanolamine and moderate to minor amounts of phosphatidylserine, unidentified aminolipids, aminophospholipids, aminophosphoglycolipids, polar lipids lacking a functional group and an unidentified phospholipid and a glycolipid. In the polyamine pattern sym-homospermidine is predominant. On the basis of the results obtained, strain 9AT is proposed as a novel species of the genus Hymenobacter, for which the name Hymenobacter caeli sp. nov. is suggested. The type strain is 9AT (=CCM 8971T=LMG 32109T=DSM 111653T).


Assuntos
Microbiologia do Ar , Bacteroidetes/isolamento & purificação , Ilhas , Regiões Antárticas , Bacteroidetes/classificação , Bacteroidetes/genética , Composição de Bases , DNA Bacteriano/genética , Genoma Bacteriano , Funções Verossimilhança , Filogenia , RNA Ribossômico 16S/genética
4.
Int J Syst Evol Microbiol ; 70(9): 4935-4941, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32744985

RESUMO

A rod-shaped and Gram-stain-negative bacterial strain, 1BT, was isolated from an air sample collected at King George Island, maritime Antarctica. Strain 1BT is strictly aerobic, psychrophilic, catalase-positive, oxidase-positive and non-motile. Growth of strain 1BT is observed at 0-20 °C (optimum, 10 °C), pH 6.0-8.0 (optimum, pH 8.0) and in the presence of 0-1.0% NaCl (optimum, 0.5 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequences places strain 1BT within the genus Hymenobacter and shows the highest similarity to Hymenobacter antarcticus VUG-A42aaT (97.5 %). The predominant menaquinone of strain 1BT is MK-7 and the major fatty acids (>10 %) comprise summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 32.5 %), iso-C15 : 0 (17.6 %) and anteiso C15 : 0 (12.3 %). The polar lipid profile consists of the major compounds phosphatidylethanolamine, phosphatidylserine, two unidentified aminolipids and one unidentified phospholipid. The DNA G+C content based on the draft genome sequence is 61.2 mol%. Based on the data from the current polyphasic study, 1BT represents a novel species of the genus Hymenobacter, for which the name Hymenobacter artigasi sp. nov. is suggested. The type strain is 1BT (=CCM 8970T=CGMCC 1.16843T).


Assuntos
Microbiologia do Ar , Cytophagaceae/classificação , Filogenia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Sci Data ; 6(1): 140, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366912

RESUMO

The rocky, seasonally-dry and nutrient-impoverished soils of the Brazilian campos rupestres impose severe growth-limiting conditions on plants. Species of a dominant plant family, Velloziaceae, are highly specialized to low-nutrient conditions and seasonal water availability of this environment, where phosphorus (P) is the key limiting nutrient. Despite plant-microbe associations playing critical roles in stressful ecosystems, the contribution of these interactions in the campos rupestres remains poorly studied. Here we present the first microbiome data of Velloziaceae spp. thriving in contrasting substrates of campos rupestres. We assessed the microbiomes of Vellozia epidendroides, which occupies shallow patches of soil, and Barbacenia macrantha, growing on exposed rocks. The prokaryotic and fungal profiles were assessed by rRNA barcode sequencing of epiphytic and endophytic compartments of roots, stems, leaves and surrounding soil/rocks. We also generated root and substrate (rock/soil)-associated metagenomes of each plant species. We foresee that these data will contribute to decipher how the microbiome contributes to plant functioning in the campos rupestres, and to unravel new strategies for improved crop productivity in stressful environments.


Assuntos
Magnoliopsida/microbiologia , Microbiota , Fósforo/química , Microbiologia do Solo , Solo/química , Bactérias/classificação , Biodiversidade , Brasil , Fungos/classificação , Metagenoma , Metiltransferases/genética , Análise de Sequência de DNA
6.
mSystems ; 4(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834326

RESUMO

Gulf of Mexico sediments harbor numerous hydrocarbon seeps associated with high sedimentation rates and thermal maturation of organic matter. These ecosystems host abundant and diverse microbial communities that directly or indirectly metabolize components of the emitted fluid. To investigate microbial function and activities in these ecosystems, metabolic potential (metagenomic) and gene expression (metatranscriptomic) analyses of two cold seep areas of the Gulf of Mexico were carried out. Seeps emitting biogenic methane harbored microbial communities dominated by archaeal anaerobic methane oxidizers of phylogenetic group 1 (ANME-1), whereas seeps producing fluids containing a complex mixture of thermogenic hydrocarbons were dominated by ANME-2 lineages. Metatranscriptome measurements in both communities indicated high levels of expression of genes for methane metabolism despite their distinct microbial communities and hydrocarbon composition. In contrast, the transcription level of sulfur cycle genes was quite different. In the thermogenic seep community, high levels of transcripts indicative of syntrophic anaerobic oxidation of methane (AOM) coupled to sulfate reduction were detected. This syntrophic partnership between the dominant ANME-2 and sulfate reducers potentially involves direct electron transfer through multiheme cytochromes. In the biogenic methane seep, genes from an ANME-1 lineage that are potentially involved in polysulfide reduction were highly expressed, suggesting a novel bacterium-independent anaerobic methane oxidation pathway coupled to polysulfide reduction. The observed divergence in AOM activities provides a new model for bacterium-independent AOM and emphasizes the variation that exists in AOM pathways between different ANME lineages. IMPORTANCE Cold seep sediments are complex and widespread marine ecosystems emitting large amounts of methane, a potent greenhouse gas, and other hydrocarbons. Within these sediments, microbial communities play crucial roles in production and degradation of hydrocarbons, modulating oil and gas emissions to seawater. Despite this ecological importance, our understanding of microbial functions and methane oxidation pathways in cold seep ecosystems is poor. Based on gene expression profiling of environmental seep sediment samples, the present work showed that (i) the composition of the emitted fluids shapes the microbial community in general and the anaerobic methanotroph community specifically and (ii) AOM by ANME-2 in this seep may be coupled to sulfate reduction by Deltaproteobacteria by electron transfer through multiheme cytochromes, whereas AOM by ANME-1 lineages in this seep may involve a different, bacterium-independent pathway, coupling methane oxidation to elemental sulfur/polysulfide reduction.

7.
Curr Microbiol ; 76(5): 566-574, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820638

RESUMO

Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.


Assuntos
Antibiose , Burkholderia cenocepacia/genética , Complexo Burkholderia cepacia , Carbono/metabolismo , Genoma Bacteriano , Nitrogênio/metabolismo , Bacteriocinas/genética , Burkholderia cenocepacia/isolamento & purificação , Quitinases/genética , Solanum lycopersicum/microbiologia , México , Rizosfera , Análise de Sequência de DNA , Sideróforos/genética , Microbiologia do Solo
8.
Artigo em Inglês | MEDLINE | ID: mdl-30533862

RESUMO

We sequenced six actinobacterial genomes isolated from a salt mine and from soil in a high-mountain Páramo ecosystem. The strains belonged to the genera Streptomyces, Nesterenkonia, and Isoptericola and were sequenced due to their antimicrobial and cytotoxic activities.

9.
Braz. j. microbiol ; 49(1): 5-6, Jan.-Mar. 2018.
Artigo em Inglês | LILACS | ID: biblio-889197

RESUMO

ABSTRACT The type strain SUR2 of the novel species Chryseobacterium limigenitum was isolated from a dehydrated sludge of the municipal sewage treatment plant in Dogoše near Maribor in Slovenia. The draft genome, with 60 contigs, 4,697,725 bp, 34.4% of G+C content, was obtained using the Illumina HiSeq 2500-1 platform. Joint Genome Institute Microbial Genome Annotation Pipeline (MGAP v.4) has identified 4322 protein-coding sequences including resistance genes against arsenic and other heavy metals. In addition, a subclass B3 metallo-β-lactamase, which confers resistance to penicillins, cephalosporins and carbapenems, was also present in the genome. The genome sequence provides important information regarding bioremediation potential and pathogenic properties of this newly identified species.


Assuntos
Esgotos/microbiologia , Genoma Bacteriano , Chryseobacterium/genética , Penicilinas/farmacologia , Filogenia , Esgotos/química , Composição de Bases , DNA Bacteriano/genética , Dados de Sequência Molecular , Sequência de Bases , Testes de Sensibilidade Microbiana , Carbapenêmicos/farmacologia , Chryseobacterium/isolamento & purificação , Chryseobacterium/classificação , Chryseobacterium/efeitos dos fármacos , Antibacterianos/farmacologia
10.
Braz. J. Microbiol. ; 49(1): 5-6, jan.-mar. 2018.
Artigo em Inglês | VETINDEX | ID: vti-18743

RESUMO

The type strain SUR2 of the novel species Chryseobacterium limigenitum was isolated from a dehydrated sludge of the municipal sewage treatment plant in Dogoše near Maribor in Slovenia. The draft genome, with 60 contigs, 4,697,725 bp, 34.4% of G+C content, was obtained using the Illumina HiSeq 2500-1 platform. Joint Genome Institute Microbial Genome Annotation Pipeline (MGAP v.4) has identified 4322 protein-coding sequences including resistance genes against arsenic and other heavy metals. In addition, a subclass B3 metallo-β-lactamase, which confers resistance to penicillins, cephalosporins and carbapenems, was also present in the genome. The genome sequence provides important information regarding bioremediation potential and pathogenic properties of this newly identified species.(AU)


Assuntos
Chryseobacterium/genética , Esgotos , Genoma Bacteriano , Arsenitos , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA