Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neural Regen Res ; 19(4): 895-899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37843226

RESUMO

Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrè syndrome, mostly related to halted axon regeneration. Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration. These effects involve the activation of the small GTPase RhoA/ROCK signaling pathways, which negatively modulate growth cone cytoskeleton, similarly to well stablished inhibitors of axon regeneration described so far. The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632, a selective pharmacological inhibitor of ROCK, in a mouse model of axon regeneration of peripheral nerves, where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers. Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632. Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity. In contrast, the same dose showed toxic effects on the regeneration of myelinated fibers. Interestingly, scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632. Overall, these findings confirm the in vivo participation of RhoA/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody. Our findings open the possibility of therapeutic pharmacological intervention targeting RhoA/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.

2.
J Peripher Nerv Syst ; 28(3): 398-406, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498737

RESUMO

BACKGROUND AND AIMS: Multifocal motor neuropathy (MMN) is a peripheral nerve disorder characterized by slow progressive distal asymmetric weakness with minimal or no sensory impairment. Currently, a vast evidence supports a direct pathogenic role of IgM anti-GM1 antibodies on disease pathogenesis. Patients with MMN seropositive for GM1-specific IgM antibodies have significantly more weakness, disability and axon loss than patients without these antibodies. During the screening for IgM anti-GM1 antibodies in a cohort of patients with neuropathy we noticed an absence or significant reduction of natural IgM anti-GM1 autoreactivity in some patients with MMN, suggesting a mechanism of self-control of autoreactivity. We aim to understand the lack of natural reactivity against GM1 in MMN patients. METHODS: The presence of free IgM anti-GM1 reactivity or its complex to blocking IgG was analysed by combining high performance thin layer chromatography-immunostaining, soluble binding inhibition assays, Protein-G or GM1-affinity columns and dot blot assays. RESULTS: We identified in MMN patients an immunoregulation of IgM anti-GM1 antibodies mediated by IgG immunoglobulins characterized by: (i) lack of natural IgM anti-GM1 autoreactivity as a result of a immunoregulatory IgG-dependent mechanism; (ii) presence of natural and disease-associated IgM anti-GM1/IgG blocking Ab complexes in sera; and (iii) high levels of IgG blocking against natural IgM anti-GM1 antibodies (Abs. INTERPRETATION: Our observations unmask a spontaneous IgG-dependent mechanism of immunoregulation against IgM anti-GM1 antibodies that could explain, in part, fluctuations in the usually slowly progressive clinical course that characterizes the disease and, at the same time, allows the identification of an autoimmune response against GM1 ganglioside in seronegative patients.


Assuntos
Doenças do Sistema Nervoso Periférico , Polineuropatias , Humanos , Gangliosídeo G(M1) , Imunoglobulina G , Autoimunidade , Imunoglobulina M
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166324, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954343

RESUMO

BACKGROUND: Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms. PURPOSE: To unravel the molecular mechanisms underlying the protective effect of anti-MAG therapy with a focus on neuroprotection against Glu toxicity. RESULTS: MAG activation (via antibody crosslinking) triggered the clearance of extracellular Glu by its uptake into OLs via high affinity excitatory amino acid transporters. This resulted not only in protection of OLs but also nearby neurons. MAG activation led to a PKC-dependent activation of factor Nrf2 (nuclear-erythroid related factor-2) leading to antioxidant responses including increased mRNA expression of metabolic enzymes from the glutathione biosynthetic pathway and the regulatory chain of cystine/Glu antiporter system xc- increasing reduced glutathione (GSH), the main antioxidant in cells. The efficacy of early anti-MAG mAb administration was demonstrated in a preclinical model of excitotoxicity induced by intrastriatal Glu administration and extended to a model of Experimental Autoimmune Encephalitis showing axonal damage secondary to demyelination. CONCLUSIONS: MAG activation triggers Glu uptake into OLs under conditions of Glu overload and induces a robust protective antioxidant response.


Assuntos
Anticorpos Monoclonais/imunologia , Ácido Glutâmico/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Axônios/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Ácido Glutâmico/administração & dosagem , Ácido Glutâmico/farmacologia , Glutationa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Associada a Mielina/imunologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Exp Neurol ; 278: 42-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26804001

RESUMO

Several reports have linked the presence of high titers of anti-Gg Abs with delayed recovery/poor prognosis in GBS. In most cases, failure to recover is associated with halted/deficient axon regeneration. Previous work identified that monoclonal and patient-derived anti-Gg Abs can act as inhibitory factors in an animal model of axon regeneration. Further studies using primary dorsal root ganglion neuron (DRGn) cultures demonstrated that anti-Gg Abs can inhibit neurite outgrowth by targeting gangliosides via activation of the small GTPase RhoA and its associated kinase (ROCK), a signaling pathway common to other established inhibitors of axon regeneration. We aimed to study the molecular basis of the inhibitory effect of anti-Gg abs on neurite outgrowth by dissecting the molecular dynamics of growth cones (GC) cytoskeleton in relation to the spatial-temporal analysis of RhoA activity. We now report that axon growth inhibition in DRGn induced by a well characterized mAb targeting gangliosides GD1a/GT1b involves: i) an early RhoA/ROCK-independent collapse of lamellipodia; ii) a RhoA/ROCK-dependent shrinking of filopodia; and iii) alteration of GC microtubule organization/and presumably dynamics via RhoA/ROCK-dependent phosphorylation of CRMP-2 at threonine 555. Our results also show that mAb 1B7 inhibits peripheral axon regeneration in an animal model via phosphorylation/inactivation of CRMP-2 at threonine 555. Overall, our data may help to explain the molecular mechanisms underlying impaired nerve repair in GBS. Future work should define RhoA-independent pathway/s and effectors regulating actin cytoskeleton, thus providing an opportunity for the design of a successful therapy to guarantee an efficient target reinnervation.


Assuntos
Anticorpos/farmacologia , Microtúbulos/patologia , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Polissacarídeos/imunologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Microtúbulos/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Transdução de Sinais
5.
J Neurosci Res ; 84(5): 1085-90, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16881049

RESUMO

High antibody affinity has been proposed as a disease determinant factor in neuropathies associated with anti-GM1 antibodies. An experimental model of Guillain-Barré syndrome, induced by immunization of rabbits with bovine brain gangliosides or GM1, was described recently (Yuki et al. [2001] Ann. Neurol. 49:712-720). We searched plasma from these rabbits, taken at disease onset and 1 or 2 weeks prior to onset, for the presence of high-affinity anti-GM1 IgG antibodies. Affinity was estimated by soluble antigen binding inhibition. High-affinity antibodies (binding inhibition by 10(-9) M GM1) were detected at disease onset but not before. No such difference was found for other antibody parameters such as titer, fine specificity, and population distribution. These findings support the proposed role of high affinity as an important factor in disease induction by anti-GM1 antibodies.


Assuntos
Afinidade de Anticorpos , Autoanticorpos/imunologia , Gangliosídeo G(M1)/imunologia , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/fisiopatologia , Animais , Especificidade de Anticorpos/fisiologia , Sítios de Ligação de Anticorpos , Bovinos , Cromatografia em Camada Fina/métodos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Coelhos , Fatores de Tempo
6.
Biochim Biophys Acta ; 1762(3): 357-61, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16410045

RESUMO

High titers of anti-GA1 antibodies have been associated with neurological syndromes. In most cases, these antibodies cross-react with the structurally related glycolipids GM1 and GD1b, although specific anti-GA1 antibodies have also been reported. The role of specific anti-GA1 antibodies is uncertain since the presence of GA1 in the human nervous system has not been clarified. A rabbit was immunized with GD1a and its sera were screened for antibody reactivity by standard immunoassay methods (HPTLC-immunostaining and ELISA). Anti-GD1a antibodies were not detected but, unexpectedly, anti-GA1 IgG-antibodies were found. Antibody binding to GA1 was inhibited by soluble GA1 but also by GD1a. These results indicate that the rabbit produced antibodies that recognize epitopes present on the glycolipids, that are absent or not exposed on solid phase adsorbed GD1a. We investigated the presence of these unusual anti-ganglioside antibodies in normal and neurological patient sera. Approximately, 10% of normal human sera contained low titer of specific anti-GA1 IgG-antibodies but none of them recognized soluble GD1a. High titers of IgG-antibodies reacting only with GA1 were detected in 12 patient sera out of 325 analyzed. Of these, 6 sera showed binding that was inhibited by soluble GD1a and four of them also by GM1. This new type of anti-ganglioside antibodies should be considered important elements for understanding of the pathogenesis of these diseases as well as their diagnosis.


Assuntos
Anticorpos/sangue , Gangliosídeos/imunologia , Doenças do Sistema Nervoso , Animais , Gangliosídeos/química , Humanos , Imunoensaio , Modelos Moleculares , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/imunologia , Conformação Proteica , Coelhos
7.
J Neuroimmunol ; 164(1-2): 31-6, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15950291

RESUMO

OBJECTIVE: In sera from normal rats and from rats injected with whole myelin in complete Freund adjuvant to induce EAE we study the presence of antibodies capable to inhibit the reactivity of autoantibodies directed to myelin basic protein (MBP). METHODS: Sera from rats that developed or not clinical signs of EAE were obtained previously to immunization, at acute stage of the disease and when the animals were completely recuperated, and chromatographied on a protein G-Sepharose column to obtain the retained (IgG) fractions. Then these fractions were depleted of anti-MBP reactivity by affinity chromatography and the ability of these depleted sera to block the reactivity of anti-MBP IgG antibodies was analyzed by an immunoblot technique. RESULTS: IgG fractions from preimmune sera inhibited the anti-MBP IgG reactivity associated to EAE. The analysis of sick EAE animals showed that the inhibitory activity faded away with the onset of the clinical signs but returned at its maximum value during the spontaneous remission. Animals that never developed clinical EAE did not show changes in the level of inhibitory activity that was similar to that observed in the preimmune sera. CONCLUSIONS: The presence of IgG antibodies blocking the anti-MBP IgG reactivity correlates with the development of the clinical signs of EAE.


Assuntos
Autoanticorpos/efeitos adversos , Encefalomielite Autoimune Experimental/etiologia , Proteína Básica da Mielina/imunologia , Animais , Western Blotting/métodos , Peso Corporal/fisiologia , Cromatografia de Afinidade/métodos , Relação Dose-Resposta Imunológica , Encefalomielite Autoimune Experimental/imunologia , Imunização Passiva , Imunoglobulina G/efeitos adversos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Ratos , Ratos Wistar , Índice de Gravidade de Doença
8.
Neurochem Res ; 27(7-8): 687-95, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12374203

RESUMO

Elevated titers of serum antibodies against GM1-ganglioside are associated with a variety of autoimmune neuropathies. The origin of these autoantibodies is still unknown, although there is evidence that they are produced by CD5+ B-lymphocytes and that antigen mimicry is involved. Anti-GM, IgM-antibodies in the normal human immunological repertoire are low affinity antibodies that cross-react with other glycoconjugates carrying Gal beta1-3GalNAc and probably do not have GM1-mediated biological activity. Other anti-GM1 IgM-antibodies with higher affinity and/or different fine specificity are present in patients with motor syndromes. Based on our studies of structural requirement for binding, we hypothesize that disease-associated anti-GM1 antibodies originate at random by mutations affecting the binding site of naturally-occurring ones. The hypothesis is conceptually similar to the established phenomenon of "genetic drift" in species evolutionary biology and is therefore termed "binding site drift".


Assuntos
Autoanticorpos/imunologia , Sítios de Ligação de Anticorpos , Gangliosídeo G(M1)/imunologia , Humanos
9.
Medicina (B Aires) ; 62(3): 237-40, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12150006

RESUMO

Recent studies have shown that antiganglioside antibodies, particularly those associated with the disialosyl group, may be involved in immune-mediated sensory peripheral neuropathies. We report the results of plasma screening for antiganglioside antibodies in two patients with chronic ataxic neuropathy. We found reactivity against gangliosides GD3, GD1b, and GT1b in one of them and against GD1a in the other, even though both had nearly identical clinical pictures. Results suggest that anti-GD1a antibodies, which are usually associated with motor polyneuropathy, may also be involved in the pathogenesis of clinically pure sensory polyneuropathy.


Assuntos
Anticorpos/sangue , Ataxia/imunologia , Gangliosídeos/imunologia , Adulto , Ataxia/sangue , Doença Crônica , Extremidades , Gangliosídeos/sangue , Humanos , Masculino
10.
Mol Immunol ; 38(11): 825-31, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11922940

RESUMO

Aberrant O-glycosylation of cell surface mucin antigens is characteristic of epithelial cancer cells. For example, Thomsen-Friedenreich disaccharide (TFD) is a chemically well-defined carbohydrate antigen with a documented link to malignancy. There have been many attempts to improve immune response to carbohydrate antigens, for use in immunotherapy. As part of an alternative strategy to improve carbohydrate immunogenicity, we studied the influence of terminal benzyl (Bzl) or p-nitrophenyl (pNP) residue on immunogenicity of adjacent TFD. Mice immunized with keyhole limpets hemocyanin-TFD (KLH-TFD), KLH-TFD(alpha)Bzl, or KLH-TFD(alpha)pNP produced anti-KLH antibodies, which were analyzed by enzyme-linked immunosorbent assay (ELISA). KLH-TFD did not give significant anti-TFD antibody titer, confirming the poor immunogenicity of TFD. Immunization with KLH-TFD(alpha)Bzl and KLH-TFD(alpha)pNP raised antibody titers against TFD(alpha)Bzl and TFD(alpha)pNP, respectively. KLH-TFD(alpha)Bzl also gave higher anti-TFD antibody response, whereas KLH-TFD(alpha)pNP did not, indicating that terminal Bzl residue improves immune response to adjacent carbohydrate. Analysis of anti-TFD(alpha)Bzl or anti-TFD(alpha)pNP IgG antibodies by competitive ELISA, using carbohydrate-related antigens as inhibitors, demonstrated their high specificity to their respective antigens. Anti-TFD(alpha)pNP antibody was not inhibited by TFD, but was significantly inhibited by GalNAc(alpha)pNP. The fact that p-nitrophenol (pNPol) has more competitive ability that GalNAc indicates that terminal polar residue is the main target antigen. In contrast, anti-TFD(alpha)Bzl antibody was inhibited to a similar degree by GalNAc(alpha)Bzl and TFD, confirming the carbohydrate recognition by antibodies yielded by terminal non-polar modification of the immunogen.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Dissacarídeos/imunologia , Animais , Especificidade de Anticorpos , Antígenos Glicosídicos Associados a Tumores/química , Ensaio de Imunoadsorção Enzimática , Feminino , Hemocianinas/imunologia , Imunização , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA