Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(3): 1728-1736, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370282

RESUMO

Theoretical studies have identified cesium titanium bromide (Cs2TiBr6), a vacancy-ordered double perovskite, as a promising lead-free and earth-abundant candidate to replace Pb-based perovskites in photovoltaics. Our research is focused on overcoming the limitations associated with the current Cs2TiBr6 syntheses, which often involve high-vacuum and high-temperature evaporation techniques, high-energy milling, or intricate multistep solution processes conducted under an inert atmosphere, constraints that hinder industrial scalability. This study presents a straightforward, low-energy, and scalable solution procedure using microwave radiation to induce the formation of highly crystalline Cs2TiBr6 in a polar solvent. This methodology, where the choice of the solvent plays a crucial role, not only reduces the energy costs associated with perovskite production but also imparts exceptional stability to the resulting solid, in comparison with previous reports. This is a critical prerequisite for any technological advancement. The low-defective material demonstrates unprecedented structural stability under various stimuli such as moisture, oxygen, elevated temperatures (over 130 °C), and continuous exposure to white light illumination. In summary, our study represents an important step forward in the efficient and cost-effective synthesis of Cs2TiBr6, offering a compelling solution for the development of eco-friendly, earth-abundant Pb-free perovskite materials.

2.
Front Chem ; 10: 841964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300385

RESUMO

The relative populations of Cu38 isomers depend to a great extent on the temperature. Density functional theory and nanothermodynamics can be combined to compute the geometrical optimization of isomers and their spectroscopic properties in an approximate manner. In this article, we investigate entropy-driven isomer distributions of Cu38 clusters and the effect of temperature on their IR spectra. An extensive, systematic global search is performed on the potential and free energy surfaces of Cu38 using a two-stage strategy to identify the lowest-energy structure and its low-energy neighbors. The effects of temperature on the populations and IR spectra are considered via Boltzmann factors. The computed IR spectrum of each isomer is multiplied by its corresponding Boltzmann weight at finite temperature. Then, they are summed together to produce a final temperature-dependent, Boltzmann-weighted spectrum. Our results show that the disordered structure dominates at high temperatures and the overall Boltzmann-weighted spectrum is composed of a mixture of spectra from several individual isomers.

3.
Molecules ; 26(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203098

RESUMO

In this work, gold NPs were prepared by the Turkevich method, and their interaction with HPV and cancerous cervical tissues were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, confocal and multiphoton microscopy and SERS. The SEM images confirmed the presence and localization of the gold NPs inside of the two kinds of tissues. The light absorption of the gold NPs was at 520 nm. However, it was possible to obtain two-photon imaging (red emission region) of the gold NPs inside of the tissue, exciting the samples at 900 nm, observing the morphology of the tissues. The infrared absorption was probably due to the aggregation of gold NPs inside the tissues. Therefore, through the interaction of gold nanoparticles with the HPV and cancerous cervical tissues, a surface enhanced Raman spectroscopy (SERS) was obtained. As preliminary studies, having an average of 1000 Raman spectra per tissue, SERS signals showed changes between the HPV-infected and the carcinogenic tissues; these spectral signatures occurred mainly in the DNA bands, potentially offering a tool for the rapid screening of cancer.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/métodos , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Análise Espectral Raman/métodos , Neoplasias do Colo do Útero/diagnóstico , DNA/química , Feminino , Humanos , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
4.
Biomed Opt Express ; 11(1): 388-405, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010523

RESUMO

Intrinsic radiosensitivity is a biological parameter known to influence the response to radiation therapy in cancer treatment. In this study, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) were successfully used in conjunction with principal component analysis (PCA) to discriminate between radioresistant (LY-R) and radiosensitive (LY-S) murine lymphoma sublines (L5178Y). PCA results for normal Raman analysis showed a differentiation between the radioresistant and radiosensitive cell lines based on their specific spectral fingerprint. In the case of SERS with gold nanoparticles (AuNPs), greater spectral enhancements were observed in the radioresistant subline in comparison to its radiosensitive counterpart, suggesting that each subline displays different interaction with AuNPs. Our results indicate that spectroscopic and chemometric techniques could be used as complementary tools for the prediction of intrinsic radiosensitivity of lymphoma samples.

5.
Dalton Trans ; 48(27): 9962-9973, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31074748

RESUMO

Photodynamic and immune therapies are innovative medical strategies against cancer, and their integration with upconversion nanoparticles (UCNPs) can improve the diagnosis and treatment of the disease. The UCNPs convert the deep penetrating near-infrared (NIR) light into higher energy emissions, allowing the imaging and detection of malignant cells and the simultaneous energy transfer for activation of the photosensitizers. In this work, the UCNPs were coated with a photocatalytic TiO2/ZrO2 shell and an increase of oxygen defects (VO) was observed as a result of the partial substitution of Ti4+ by Zr4+ ions in the crystalline lattice of TiO2. Such defects act as trapping states improving charge separation and then reducing the recombination rate of the electron-hole pairs (e-/h+) generated upon resonant energy transfer from the donor (UCNPs) to acceptors (shell). The overall results are the enhancement of both ROS production and the emission band centered at 801 nm which is useful for tracking cells at the deep tissue level. However, an excess of those defects produces deleterious effects on both processes as a result of charge migration. The specificity against HER2 positive breast cancer was provided by bioconjugation with the monoclonal antibody trastuzumab. After administration of the synthesized NaYF4:Yb,Tm@TiO2/ZrO2-trastuzumab theranostic nanocomplex doped with an optimal ZrO2 molar concentration (25%) and subsequent exposure to 975 nm light (0.71 W cm-2) during 5 minutes, HER2-positive SKBr3 breast cancer cells were suppressed with 88% drop of the cell viability, 28% higher than UCNPs decorated with a pure TiO2 shell.


Assuntos
Neoplasias da Mama/patologia , Fluoretos/química , Fotoquimioterapia , Nanomedicina Teranóstica/métodos , Túlio/química , Titânio/química , Itérbio/química , Zircônio/química , Humanos , Células MCF-7 , Nanocompostos/química , Espécies Reativas de Oxigênio/metabolismo , Trastuzumab/química , Trastuzumab/farmacologia
6.
ACS Appl Mater Interfaces ; 10(4): 3571-3580, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29318870

RESUMO

We for the first time report the incorporation of cobalt into a mesoporous TiO2 electrode for application in perovskite solar cells (PSCs). The Co-doped PSC exhibits excellent optoelectronic properties; we explain the improvements by passivation of electronic trap or sub-band-gap states arising due to the oxygen vacancies in pristine TiO2, enabling faster electron transport and collection. A simple postannealing treatment is used to prepare the cobalt-doped mesoporous electrode; UV-visible spectroscopy, X-ray photoemission spectroscopy, space charge-limited current, photoluminescence, and electrochemical impedance measurements confirm the incorporation of cobalt, enhanced conductivity, and the passivation effect induced in the TiO2. An optimized doping concentration of 0.3 mol % results in the maximum power conversion efficiency of 18.16%, 21.7% higher than that of a similar cell with an undoped TiO2 electrode. Also, the device shows negligible hysteresis and higher stability, retaining 80.54% of the initial efficiency after 200 h.

7.
J Phys Chem Lett ; 8(24): 6073-6079, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29186659

RESUMO

The performance of perovskite solar cell (PSC) is highly sensitive to deposition conditions, the substrate, humidity, and the efficiency of solvent extraction. However, the physical mechanism involved in the observed changes of efficiency with different deposition conditions has not been elucidated yet. In this work, PSCs were fabricated by the antisolvent deposition (AD) and recently proposed air-extraction antisolvent (AAD) process. Impedance analysis and J-V curve fitting were used to analyze the photogeneration, charge transportation, recombination, and leakage properties of PSCs. It can be elucidated that the improvement in morphology of perovskite film promoted by AAD method leads to increase in light absorption, reduction in recombination sites, and interstitial defects, thus enhancing the short-circuit current density, open-circuit voltage, and fill factor. This study will open up doors for further improvement of device and help in understanding its physical mechanism and its relation to the deposition methods.

8.
Biomed Opt Express ; 7(6): 2407-18, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27375955

RESUMO

In the present work, we report a dry-based application technique of Au/SiO2 clouds in powder for rapid ex vivo adenocarcinoma diagnosis through surface-enhanced Raman scattering (SERS); using low laser power and an integration time of one second. Several characteristic Raman peaks frequently used for the diagnosis of breast adenocarcinoma in the range of the amide III are successfully enhanced by breading the tissue with Au/SiO2 powder. The SERS activity of these Au/SiO2 powders is attributed to their rapid rehydration upon contact with the wet tissues, which promotes the formation of gold nanoparticle aggregates. The propensity of the Au/SiO2 cloud structures to adsorb biomolecules in the vicinity of the gold nanoparticle clusters promotes the necessary conditions for SERS detection. In addition, electron microscopy, together with elemental analysis, have been used to confirm the structure of the new Au/SiO2 cloud material and to investigate its distribution in breast tissues.

9.
Phys Chem Chem Phys ; 17(28): 18590-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26113151

RESUMO

A multilayered semiconductor sensitizer structure composed of three differently sized CdSe quantum rods (QRs), labeled as Q530, Q575, Q590, were prepared and deposited on the surface of mesoporous TiO2 nanoparticles by electrophoretic deposition (EPD) for photovoltaic applications. By varying the arrangement of layers as well as the time of EPD, the photoconversion efficiency was improved from 2.0% with the single layer of CdSe QRs (TiO2/Q590/ZnS) to 2.9% for multilayers (TiO2/Q590Q575/ZnS). The optimal EPD time was shorter for the multilayered structures. The effect of CdS quantum dots (QDs) deposited by successive ionic layer adsorption and reaction (SILAR) was also investigated. The addition of CdS QDs resulted in the enhancement of efficiency to 4.1% for the configuration (TiO2/CdS/Q590Q575/ZnS), due to increased photocurrent and photovoltage. Based on detailed structural, optical, and photoelectrical studies, the increased photocurrent is attributed to broadened light absorption while the increased voltage is due to a shift in the relevant energy levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA