Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxics ; 12(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535909

RESUMO

The aim of this study was to evaluate the acute lethality and chronic sublethal effects of lithium (Li) on Rhinella arenarum tadpoles as model organisms. First a 96 h toxicity assay was performed by exposing tadpoles to Li concentrations from 44.08 to 412.5 mg L-1 to estimate the mortality, and lethal and sublethal effects. Another bioassay was carried out by exposing tadpoles to two environmentally relevant Li concentrations (2.5 and 20 mg L-1) for one and two weeks. The sublethal effects of Li on tadpoles were evaluated by analyzing biochemical, genotoxic, and physiological biomarkers. The mortality in Li-exposed tadpoles increased over time. The median lethal concentration (LC50) ranged from 319.52 (281.21-363.05) mg L-1 at 48 h to 66.92 (52.76-84.89) mg L-1 at 96 h. Exposure to Li at 2.5 and 20 mg L-1 induced alterations in enzymes related to detoxification, antioxidant, and hepatic mechanisms, endocrine disruption of thyroid hormones, genotoxicity, and effects on the physiology of the heart and gastrointestinal systems. Tadpoles exposed to the highest concentration in the chronic bioassay (20 mg L-1 Li), which is the concentration commonly recorded in Li mining sites, showed significant mortality after one week of exposure. These results warn about the high ecotoxicological risk of Li as a contaminant of emerging concern for amphibians.

2.
Water Environ Res ; 96(3): e11010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433361

RESUMO

The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.


Assuntos
Tartarugas , Animais , Biomarcadores Ambientais , Águas Residuárias , Ecossistema , Rios , Anfíbios , Saúde Ambiental , Água , América do Sul
3.
Rev. argent. microbiol ; 55(2): 3-3, jun. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449401

RESUMO

Abstract The high load of agrochemicals and antibiotics present in agricultural aquatic environments represents a risk for wildlife. Since enteric bacteria, which play a key role in the physiological functioning of their hosts, are sensitive to a wide variety of pollutants, their study allows to evaluate the health of organisms. This study aimed to evaluate the effects of commercial formulations of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP), individually and in mixture, on the bacterial diversity of the intestinal content of common toad (Rhinella arenarum) tadpoles. The diversity of cultivable fast-growing bacteria with low nutritional requirements was evaluated using classic microbiological tests and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification. Bacterial diversity varied among treatments. Taxa diversity increased in the GBH-treated group but decreased in the CIP-treated group. Remarkably, Yersinia spp. and Proteus spp. were only found in the GBH-treated group. The prevalence of Klebsiella spp. and Pseudomonas spp. decreased in the intestinal microbiota of the GBH-CIP-treated group. To our knowledge, this is the first report on the alteration of cultivable enteric bacteria of autochthonous tadpoles due to two pollutants of emerging concern. Our results demonstrate that R. arenarum tadpoles can be used as non-conventional model organisms for environmental pollution monitoring. Our preliminary findings would contribute to understanding how the presence of GBH and CIP in freshwaters may represent a threat to wildlife and human health by causing enteric dysbiosis of part of the bacterial community.


Resumen La alta carga de agroquímicos y antibióticos en los ambientes acuáticos y los agroe-cosistemas representa un riesgo para la vida silvestre. Dado que la microbiota intestinal juega un papel fundamental en el funcionamiento de su hospedador y es sensible a una amplia variedad de contaminantes, su estudio permite evaluar la salud de los organismos. En este trabajo estudiamos los efectos de formulaciones comerciales de un herbicida a base de glifosato (GBH) y del antibiótico ciprofloxacina (CIP), por separado y en mezcla, sobre la diversidad de bacterias intestinales de renacuajos del sapo común (Rhinella arenarum). El estudio de la diversidad de bacterias entéricas cultivables de rápido crecimiento y bajo requerimiento nutricional se llevó a cabo utilizando pruebas microbiológicas clásicas e identificación por espectrometría de masas de tiempo de vuelo por desorción/ionización láser asistida por matriz (MALDI-TOF). La microbiota entérica fue diferente según el tratamiento. El GBH indujo un aumento de la diversidad bacteriana, mientras que la CIP produjo una reducción. Entre estos cambios, destaca la presencia de Yersinia spp. y Proteus spp. solo en el tratamiento con GBH. Además, en el tratamiento GBH-CIP se encontró una disminución en la prevalencia de Klebsiella spp. y Pseudomonas spp. en la microbiota intestinal de los renacuajos. Este es el primer informe sobre la alteración del contenido bacteriano intestinal de renacuajos de R. arenarum producido por dos contaminantes emergentes de preocupación. Demostramos que el renacuajo del sapo común se puede utilizar como un organismo modelo no convencional para el monitoreo de la contaminación ambiental. Estos hallazgos constituyen el primer paso para comprender cómo la presencia de GBH y CIP en aguas dulces puede representar una amenaza para la vida silvestre y la salud humana a través de la disbiosis entérica asociada al efecto sobre la comunidad bacteriana.

4.
Water Environ Res ; 95(6): e10899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255341

RESUMO

Amphibians are subject to several stressors in the aquatic and terrestrial environments, and human activities have profoundly impacted this vertebrate group. The aim of the present study was to analyze physicochemical parameters, metals and pesticide residues, and the toxicity of water and sediment samples from an environment with high agricultural activity (S1: Salto stream; S2: drainage channel downstream from S1) by means of bioassays using Rhinella arenarum (Amphibia: Anura) larvae. Metals and pesticides were analyzed in water and sediment samples by fluorescence spectrometer of X-ray by total reflection and ultra-high-performance liquid chromatography-MS/MS, respectively. For lethality bioassays, 10 larvae (in triplicate) were exposed for 504 h to water and sediment samples. Also, 50 larvae were exposed for 96 h (in triplicate) to water and sediment samples for the evaluation of biomarkers of neurotoxicity, oxidative stress, and genotoxicity. Twenty-six different pesticides (mainly herbicides) were detected in both sites, and Cu, Zn, and Pb exceeded the limit for protection of aquatic life. Lethality was observed in larvae exposed to water and sediment samples from both sites at chronic exposure. Oxidative stress was observed in larvae exposed to both sites. In larvae exposed to samples from S1, alterations in the neurotoxicity biomarkers were observed. These results alert about the degradation of the sites and highlight the need to monitor and control the use of pesticides. PRACTITIONER POINTS: Twenty-six pesticides were detected in water and sediment from Salto stream basin. Significant mortality was observed in larvae exposed to samples from all sites. Sublethal effects were observed mainly in larvae exposed to samples from Salto stream. The degraded quality can be associated with the agricultural activities of the area.


Assuntos
Praguicidas , Poluentes Químicos da Água , Humanos , Animais , Água , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Praguicidas/análise , Biomarcadores , Anfíbios/metabolismo , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química
5.
Biology (Basel) ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979083

RESUMO

The biochemical effects of sublethal exposure to polyethylene microplastics (PEM) of 40-48 µm particle size and the flame retardant tetrabromobisphenol A (TBBPA), a plastic additive, on the freshwater shrimp Palaemonetes argentinus were assessed. Here, we postulate that the use of enzyme and thyroid hormones as biomarkers contributes to the knowledge of the effects of microplastics and plastic additives on freshwater crustaceans. To address this, we evaluated the activities of acetylcholinesterase (AChE), glutathione S-transferase (GST), and carboxilesterase (CbE, using 1-naphthyl acetate (NA) as substrate) and levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) after shrimp were exposed (for 96 h) to these xenobiotics at environmentally realistic concentrations. The results showed that the mixture of both xenobiotics led to a decrease in AChE and GST activities and increased T4 levels. We suggest that physiological processes could be compromised in freshwater organisms when exposed to microplastics and TBBPA together, and this could ultimately affect upper levels of the food web.

6.
Sci Total Environ ; 870: 162019, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36740068

RESUMO

Muscle and viscera (gills-liver) of the fish Prochilodus lineatus were obtained from four sites of lower course of Salado river and one site at Santa Fe river near to its confluence with Salado river from Santa Fe (Argentina) between December 2021 and February 2022. Sediment samples were also obtained from the same sites. All samples were analyzed for pesticide residues following the QuEChERS method to quantify 136 compounds by UHPLC-ESI-MS/MS and GC-EI-MS/MS. Overall, muscle fish tissue showed very high concentrations (maximum concentrations detected) of the insecticide cypermethrin (204 µg/kg), polar herbicides (glyphosate; 187 µg/kg and its degradation product (aminomethylphosphonic acid) AMPA; 3116 µg/kg, and glufosinate-ammonium; 677 µg/kg), and the fungicide pyraclostrobin (50 µg/kg). In viscera samples, high values of cypermethrin (506 µg/kg), chlorpyrifos (78 µg/kg), and lambdacyhalothrin (73 µg/kg) were the main pesticides found. Mean residues concentrations detected among sites were not significantly different neither in muscle nor viscera of P. lineatus in most of the cases. Exceptionally, the southernmost studied site of the Lower Salado river showed significant differences in concentration of residues found in muscle, due to high concentrations of glyphosate and glufosinate-amonium (KW = 11.879 and KW = 13.013, respectively, P < 0.05). Other norther Lower Salado river site showed significant higher AMPA concentration in fish viscera than in the rest of the studied sites (KW = 12.86 P < 0.05). Some sediment samples showed low levels of herbicides such as glyphosate (24 µg/kg) and fungicides. However, the world highest levels of polar herbicides were recorded in fish muscle. The results of this study highlight the need for periodic monitoring due to the high concentration of pesticides and its potential risk in a very important commercial freshwater fish from Argentina, which is consumed locally and exported to other countries for human consumption.


Assuntos
Caraciformes , Herbicidas , Resíduos de Praguicidas , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Resíduos de Praguicidas/análise , Herbicidas/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Espectrometria de Massas em Tandem , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , América do Sul
7.
Rev Argent Microbiol ; 55(2): 120-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36682905

RESUMO

The high load of agrochemicals and antibiotics present in agricultural aquatic environments represents a risk for wildlife. Since enteric bacteria, which play a key role in the physiological functioning of their hosts, are sensitive to a wide variety of pollutants, their study allows to evaluate the health of organisms. This study aimed to evaluate the effects of commercial formulations of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP), individually and in mixture, on the bacterial diversity of the intestinal content of common toad (Rhinella arenarum) tadpoles. The diversity of cultivable fast-growing bacteria with low nutritional requirements was evaluated using classic microbiological tests and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification. Bacterial diversity varied among treatments. Taxa diversity increased in the GBH-treated group but decreased in the CIP-treated group. Remarkably, Yersinia spp. and Proteus spp. were only found in the GBH-treated group. The prevalence of Klebsiella spp. and Pseudomonas spp. decreased in the intestinal microbiota of the GBH-CIP-treated group. To our knowledge, this is the first report on the alteration of cultivable enteric bacteria of autochthonous tadpoles due to two pollutants of emerging concern. Our results demonstrate that R. arenarum tadpoles can be used as non-conventional model organisms for environmental pollution monitoring. Our preliminary findings would contribute to understanding how the presence of GBH and CIP in freshwaters may represent a threat to wildlife and human health by causing enteric dysbiosis of part of the bacterial community.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Animais , Humanos , Larva , Ciprofloxacina/efeitos adversos , Herbicidas/farmacologia , Enterobacteriaceae , Antibacterianos/efeitos adversos , Glifosato
8.
Aquat Toxicol ; 253: 106342, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327688

RESUMO

The lower Salado River basin receive agricultural, industrial and domestic waste water. So, the aim was to evaluate the quality of three sampling sites that belong to the Salado River basin (S1: Cululú stream; S2: Salado River, at Esperanza City, S3: Salado River at Santo Tomé City) based on physicochemical parameters, metals and pesticides analyses and ecotoxicity on Rhinella arenarum larvae. R. arenarum larvae (Gosner Stage -GS- 25) were chronically exposed (504h) to complex matrixes of surface water and sediment samples of each site for the determination of the survival rate. Biomarkers of oxidative stress, neurotoxicity and genotoxicity were analyzed in R. arenarum larvae (GS. 25) after exposure (96h) to the complex matrix of water and sediment. The water quality index showed a marginal quality for all sites, influenced mainly by low dissolved oxygen, high total suspended solid, phosphate, nitrite, conductivity, Pb, Cr and Cu levels. Metal concentrations were higher in sediment than in water samples (˜34-35000 times). In total, thirty different pesticides were detected in all water and sediment samples, S1 presented the greatest variety (26). Glyphosate and AMPA were detected in sediments from all sites, being higher in S3. N,N-Diethyl-meta-toluamide (DEET) and atrazine were detected in all water samples. Greatest mortality was observed in larvae exposed to samples from S1 from 288h (43.3%), reaching a maximum value of 50% at 408h. Oxidative stress and genotoxicity were observed in larvae exposed to S1 and S3 matrix samples. Neurotoxicity was observed in larvae exposed to all matrix samples. The integrated biomarker response index showed that larvae exposed to S1 and S3 were the most affected. According to the physicochemical data and the ecotoxicity assessment, this important river basin is significantly degraded and may represent a risk to aquatic biota, especially for R. arenarum larvae.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Rios , Larva , Argentina , Poluentes Químicos da Água/toxicidade , Praguicidas/análise , Bufo arenarum , Metais/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise
9.
Environ Monit Assess ; 194(10): 718, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050604

RESUMO

Microplastics (MPs) are critical emerging pollutants around the world. There is a growing interest in the effects of MP ingestion, non-digestion, and toxicity on aquatic organisms. Amphibian tadpoles are the vertebrate group that has received the least attention regarding this issue. The aim of the present study was to determine the ingestion of polyethylene MPs by Scinax squalirostris tadpoles by atomic force microscopy (AFM) and to evaluate the activities of carboxylesterase (CbE, using 4-naphthyl butyrate-NB-, and 1-naphthyl acetate -NA- as substrates) and alkaline phosphatase (ALP) under MP exposure. Enzyme activities were analyzed spectrophotometrically at 2 and 10 days of exposure. Tadpoles were exposed to two different treatments during 10 days: a negative control (CO, dechlorinated water) and MP (60 mg L-1). AFM images of the digestive contents of tadpoles revealed the presence of MPs. After 10 days of MP exposure, CbE (NB) activity was significantly higher and CbE (NA) activity was significantly lower in MP treatments than in controls. ALP activity decreased in MP treatments after 2 and 10 days of exposure. The detection of MP particles in the intestinal contents and the effects on metabolic enzymes in a common frog species evidenced the potential health risk of MP to aquatic vertebrates. Thus, the differential response in enzymes and substrates demonstrate the need for considering the complex effects of contaminants and nutrients on ecosystems for ecotoxicological risk characterization.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Anuros , Carboxilesterase/farmacologia , Ecossistema , Monitoramento Ambiental , Larva , Monoéster Fosfórico Hidrolases/farmacologia , Plásticos , Poluentes Químicos da Água/toxicidade
10.
J Environ Sci Health B ; 57(9): 687-696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35852372

RESUMO

The aim of the present study was to evaluate the response in larvae of the anuran species Rhinella arenarum, Rhinella dorbignyi and Odontophrynus americanus exposed to glyphosate (GLY, 2.5 mg L-1), cypermethrin (CYP, 0.013 mg L-1), chlorpyrifos (CP, 0.1 mg L-1) and glufosinate-ammonium (GLU, 15 mg L-1) using two behavioral endpoints: mean speed (MS) and total distance moved (TD); and two enzymatic biomarkers: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In order to assess a global response and to determine the most sensitive species, an integrated biomarker response (IBR) index was calculated. Behavioral biomarkers were tested at 1 and 60 min, and the enzymes at 60 min after exposure. The results showed that: (1) there were statistical differences between species in a series of responses in swimming behavior, and cholinesterase activities within the first-hour of exposure to CYP, GLY, and CP at environmentally relevant concentrations (ERC); (2) IBR determined that Rhinella species were the most sensitive of the species tested and (3) IBR provided a comprehensive assessment of the health status of species exposed to ERC of a wide variety of agrochemicals globally and frequently used.


Assuntos
Clorpirifos , Poluentes Químicos da Água , Acetilcolinesterase , Agroquímicos , Aminobutiratos , Animais , Anuros , Biomarcadores , Bufonidae , Butirilcolinesterase , Clorpirifos/toxicidade , Glicina/análogos & derivados , Larva , Piretrinas , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA