Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(4): 2154-2161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153938

RESUMO

BACKGROUND: Rice is one of the most consumed cereals in the world. Productivity losses are caused by different biotic stresses. One of the most common is the phytophagous mite Schizotetranychus oryzae Rossi de Simons (Acari: Tetranychidae), which inhibits plant development and seed production. The identification of plant defense proteins is important for a better understanding of the mite-plant interaction. We previously detected a high expression of Osmotin1 protein in mite-resistant rice cultivars, under infested conditions, suggesting it could be involved in plant defense against mite attack. We therefore aimed to evaluate the responses of three rice lines overexpressing Osmotin1 (OSM1-OE) and three lines lacking the Osmotin1 gene (osm1-ko) to mite attack. RESULTS: The numbers of individuals (adults, immature stages, and eggs) were significantly lower in OSM1-OE lines than those in wild-type (WT) plants. On the other hand, the osm1-ko lines showed larger numbers of mites per leaf than WT plants. When plants reached the full maturity stage, two out of the three infested OSM1-OE lines presented lower plant height than WT, while the three osm1-ko lines (infested or not) presented higher plant height than WT. The reduction in seed number caused by mite infestation was lower in OSM1-OE lines (12-19%) than in WT plants (34%), while osm1-ko lines presented higher reduction (24-54%) in seed number than WT plants (13%). CONCLUSION: These data suggest that Osmotin1 is involved in rice resistance to S. oryzae infestation. This is the first work showing increased plant resistance to herbivory overexpressing an Osmotin gene. © 2023 Society of Chemical Industry.


Assuntos
Infestações por Ácaros , Ácaros , Oryza , Tetranychidae , Humanos , Animais , Tetranychidae/genética , Tetranychidae/metabolismo , Oryza/genética , Oryza/metabolismo , Ácaros/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 12: 613568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643348

RESUMO

Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to analyze the response of two African rice species (Oryza barthii and Oryza glaberrima), weedy rice (O. sativa f. spontanea), and O. sativa cv. Nipponbare to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, and chlorophyll concentration/fluorescence indicated that the African species present a higher level of leaf damage, increased accumulation of H2O2, and lower photosynthetic capacity when compared to O. sativa plants under infested conditions. Infestation decreased tiller number, except in Nipponbare, and caused the death of O. barthii and O. glaberrima plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa, the number of panicles per plant was affected only in O. sativa f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) plants under control and infested conditions. O. barthii presents a less abundant antioxidant arsenal and is unable to modulate proteins involved in general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes, and energy production, suggesting that the primary metabolism is maintained more active compared to O. barthii under infested condition. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors (PIs). These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming at increased tolerance to mite infestation.

3.
J Plant Physiol ; 255: 153307, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33142180

RESUMO

Rice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as the number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.


Assuntos
Aclimatação/genética , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Oryza/genética , Oryza/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Aclimatação/fisiologia , Brasil , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32117948

RESUMO

Advancements in genetically modified herbicide tolerance technology opened a new way to manage weed populations in crop fields. Since then, many important genetically modified crops that are tolerant to various herbicides have been developed and commercialized. Herbicides primarily act by disrupting key enzymes involved in essential metabolic or physiological processes associated with growth and development of plants. Most of the herbicide tolerant plants have been developed by introducing point mutations (non-GM approach) in the target site of herbicide action, due to the advantage of easier registration/release for commercial cultivation as well as wider public acceptance. Of the various herbicides, Imidazolinones are probably the most widely targeted ones for developing herbicide tolerant crops through non-GM approach. In rice, different mutant lines presenting amino acids changes in acetolactate synthase (ALS) have the ability to tolerate different Imidazolinones, including point mutations of Glycine to Glutamate in position 628, Serine to Asparagine in position 627, and a double mutation Tryptophan to Leucine in position 548/Serine to Isoleucine in position 627. The use of specific herbicides in combination of these mutant lines provides a reliable approach to eliminate weeds in the fields. However, the continuous overuse of a single herbicide multiple times in a growing season increases the potential risk of evolution of resistant weeds, which has become a major concern in agriculture worldwide. For this reason, the development of novel mutations in ALS (Os02g30630) to generate rice plants more tolerant to Imidazolinones than the available mutant rice lines is still a hot topic in plant-herbicide interaction field. Keeping that in mind, we carried out molecular docking experiments of Imidazolinone herbicides imazapic, imazapyr, imazaquin, and imazethapyr to evaluate the interaction of these molecules in the binding cavity of ALS from rice, being able to identify the most important amino acids responsible for the stability of these four herbicides. After introducing point mutations in these specific positions (one at a time) using Alanine scanning mutagenesis method and recalculating the effect in the affinity of herbicide-ALS interaction, we were able to propose novel amino acid residues (mainly Lysine in position 230 and Arginine in position 351) on the structure of ALS presenting a highest impact in the binding of Imidazolinones to ALS when compared to the already known amino acid mutations. This rational approach allows the researcher/farmer to choose the number of point mutations to be inserted in a rice cultivar, which will be dependent on the type of Imidazolinone used. To obtain a rice cultivar capable to tolerate the four Imidazolinone tested at the same time, we suggest six amino acid mutations at positions Val170, Phe180, Lys230, Arg351, Trp548, and Ser627 in the OsALS1.

5.
Front Plant Sci ; 9: 1341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279693

RESUMO

Rice is the staple food for over half of the world's population. Infestation of Schizotetranychus oryzae (Acari: Tetranychidae) causes great losses in rice productivity. To search for rice genotypes that could better tolerate S. oryzae infestation, we evaluated morphological and production parameters in Brazilian cultivars, and identified two cultivars with contrasting responses. Leaf damage during infestation was similar for all cultivars. However, infestation in Puitá INTA-CL resulted in reduction in the number of seeds per plant, percentage of full seeds, weight of 1,000 seeds, and seed length, whereas infestation in IRGA 423 increased weight of 1,000 seeds and seed length. Reduction in seed weight per plant caused by infestation was clearly higher in Puitá INTA-CL (62%) compared to IRGA 423 (no reduction detected), thus Puitá INTA-CL was established as susceptible, and IRGA 423 as tolerant to S. oryzae infestation. Photosynthetic parameters were less affected by infestation in IRGA 423 than in Puitá INTA-CL, evidencing higher efficiency of energy absorption and use. S. oryzae infestation also caused accumulation of H2O2, decreased cell membrane integrity (indicative of cell death), and accelerated senescence in leaves of Puitá INTA-CL, while leaves of IRGA 423 presented higher levels of total phenolics compounds. We performed proteomics analysis of Puitá INTA-CL and IRGA 423 leaves after 7 days of infestation, and identified 60 differentially abundant proteins (28 more abundant in leaves of Puitá INTA-CL and 32 in IRGA 423). Proteins related to plant defense, such as jasmonate synthesis, and related to other mechanisms of tolerance such as oxidative stress, photosynthesis, and DNA structure maintenance, together with energy production and general metabolic processes, were more abundant in IRGA 423. We also detected higher levels of silicon (as amorphous silica cells) in leaves of infested IRGA 423 plants compared to Puitá INTA-CL, an element previously linked to plant defense, indicating that it could be involved in tolerance mechanisms. Taken together, our data show that IRGA 423 presents tolerance to S. oryzae infestation, and that multiple mechanisms might be employed by this cultivar. These findings could be used in biotechnological approaches aiming to increase rice tolerance to mite infestation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA