Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 52(5): 909-920, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725281

RESUMO

The following work consists of the description of four new species of the genus Pseudephedrus Starý (Aphidiinae), endemic to South America, associated with endemic callaphidid aphid hosts. The descriptions of the new species are based on new samples from Chile and Argentina. The new species described here are as follows: Pseudephedrus staryi sp.n., which is morphologically very close to the already described P. chilensis Starý, with clear apomorphies; P. pubescens sp.n., which presents a setose scutellum, P. flava sp.n. and P. patagonicus sp.n. which have distinct, very elongated, and crenulated petioles representing synapomorphies and probably form separate phylogenetic lineages within Pseudephedrus. All hosts are aphids from the genus Neuquenaphis Blanchard, with varying degrees of diet specialization. From our field and laboratory observations, we hypothesize that, since attempts to sample parasitoids using sweep nets were much more successful than sampling from collected aphids, and since we found mummified aphids only on the ground among the fallen leaves under the trees, Neuquenaphis aphids fall to the ground showing a dropping behaviour as a defence against natural enemies after being stung by parasitoids. This makes rearing from live aphids very unsuccessful and could help explain why it has been difficult to collect and describe species. We supplement the distribution of Pseudephedrus from South America and present a key for the identification of all species based on their morphology.

2.
Insects ; 14(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975973

RESUMO

By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies' diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid- parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards.

3.
Oecologia ; 200(3-4): 425-440, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287254

RESUMO

All species interact in complex antagonistic or mutualistic networks that may be driven by turnover in species composition due to spatiotemporal environmental filtering. Therefore, studying differences in insect communities along environmental gradients may improve our understanding of the abiotic and biotic factors that shape the structure of trophic networks. Parasitoids are interesting models to do so, due to their intimate eco-evolutionary relationship with their hosts. We explored the differences in cereal aphid-parasitoid food webs during the winter among nine localities in Chilean central-south valley, along a gradient of 1200 km from north (29° S) to south (40° S). We hypothesized that diapause incidence would increase in the coldest areas, resulting in a lower number of parasitoid species active during the winter. Consequently, network specialization, generality, and vulnerability indexes should increase with decreasing latitude, which implies fewer and more weakly connected links per parasitoid species through an increased fraction of basal host species. Based on the severity of winter, three areas along the explored gradient were distinguished, but clustering did not follow a clear north-south latitudinal gradient. Instead, few differences were observed in overwintering strategies, with very low levels of diapause in all localities, and no major differences in food-web composition. The major differences along the gradient were the relative abundances of the different aphid, parasitoid and hyperparasitoid species, with higher levels of spatial and temporal variation observed for the less abundant species. Our results provide a better understanding of the activity and abundance of aphid parasitoids during winter in relation to climatic conditions.


Assuntos
Afídeos , Animais , Cadeia Alimentar , Chile , Interações Hospedeiro-Parasita , Estações do Ano
4.
Insects ; 12(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806260

RESUMO

Understanding the role of facultative endosymbionts on the host's ecology has been the main aim of the research in symbiont-host systems. However, current research on host-endosymbiont dynamics has failed to examine the genetic background of the hosts and its effect on host-endosymbiont associations in real populations. We have addressed the seasonal dynamic of facultative endosymbiont infections among different host clones of the grain aphid Sitobion avenae, on two cereal crops (wheat and oat) and whether their presence affects the total hymenopteran parasitism of aphid hosts at the field level. We present evidence of rapid seasonal shifts in the endosymbiont frequency, suggesting a positive selection of endosymbionts at the host-level (aphids) through an agricultural growing season, by two mechanisms; (1) an increase of aphid infections with endosymbionts over time, and (2) the seasonal replacement of host clones within natural populations by increasing the prevalence of aphid clones closely associated to endosymbionts. Our results highlight how genotypic variation of hosts can affect the endosymbiont prevalence in the field, being an important factor for understanding the magnitude and direction of the adaptive and/or maladaptive responses of hosts to the environment.

5.
Insects ; 11(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575581

RESUMO

The use of cover crops can promote the abundance and early arrival of populations of natural enemies. Cereal cover crops between orchards rows could encourage the early arrival of the parasitoid Aphidius platensis, as they offer alternative winter hosts (e.g., Rhopalosiphum padi), enhancing the control of Myzus persicae in spring. However, the preference for and suitability of the alternative host must be addressed beforehand. To evaluate the potential of this strategy, we assessed host preference using behavioural choice tests, as well as no-choice tests measuring fitness traits, when developing on both host species. One source field for each aphid population from the above hosts was chosen. There was a clear choice for R. padi compared to M persicae, independently of the source, probably due to more defensive behaviours of M. persicae (i.e., kicks and escapes). Nevertheless, both aphid species were suitable for parasitoids' development. The female progeny developed on R. padi were larger in size, irrespective of their origin. According to our results, in peach orchards with cereals sown between peach trees during the autumn, where we expect when R. padi populations will no longer be available during spring, A. platensis should be able to switch to M. persicae.

6.
Insects ; 11(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384760

RESUMO

The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a major pest introduced to almost all main pome fruit production regions worldwide. This species was detected in Chile during the last decade of the 19th century, and now has a widespread distribution in all major apple-growing regions. We performed an analysis of the genetic variability and structure of codling moth populations in Chile using five microsatellite markers. We sampled the codling moth along the main distribution area in Chile on all its main host-plant species. Low genetic differentiation among the population samples (FST = 0.03) was found, with only slight isolation by distance. According to a Bayesian assignment test (TESS), a group of localities in the coastal mountain range from the Bío-Bío Region formed a distinct genetic cluster. Our results also suggest that the codling moth that invaded the southernmost locality (Aysén Region) had two origins from central Chile and another unknown source. We did not find significant genetic differentiation between codling moth samples from different host-plant species. Our results indicate high genetic exchange among codling moth populations between the different Chilean regions and host plants.

7.
Sci Rep ; 9(1): 19641, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873169

RESUMO

When a guild of species exploit the same limited resources, interspecific competition induces the exclusion of inferior competitors, in which case, interspecific recognition mechanisms are needed. Here, we address resource partitioning and interspecific competition among three main solitary parasitoid species attacking the same host resource, the aphid Sitobion avenae in wheat fields. Optimal host acceptance models predict that parasitoid species should prefer attacking unparasitized hosts when they are available in order to maximize their fitness, as already parasitized hosts are less valuable for laying eggs, especially for inferior competitors. Therefore, we expected the level of competition (multiparasitism) in the field to increase at low host density. By using a combination of taxonomical (determination) and molecular (PCR-based) approaches, we assessed the species of all parasitoid adults and immature stages within aphid hosts. Our results demonstrate that, early in the season, the multiparasitism rates were low, whereas they were high in the mid-late season, corresponding to an aphid density decrease over time. Moreover, parasitoid species could not have been exploiting host resources randomly and the better competitor, Aphidius ervi, seemed to be foraging preferentially on hosts already parasitized by the inferior competitor A. rhopalosiphi, even when unparasitized hosts were still available. This could be due to differences in their host detection capability, as species with a narrow host range may be better at detecting their hosts in comparison with species with a greater host range, such as A. ervi, with a greater host range within the guild. Our study suggests differences in the host exploitation of two prevalent parasitoid species through the main period of aphid colonization, which still allowed the coexistence of a third inferior competitor (A. rhopalosiphi) within the assemblage, in spite of some negative interactions (multiparasitism) and redundancies.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , Triticum/parasitologia , Animais , Feminino , Masculino , Oviposição/fisiologia
8.
PeerJ ; 6: e4725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761046

RESUMO

Bacterial endosymbionts that produce important phenotypic effects on their hosts are common among plant sap-sucking insects. Aphids have become a model system of insect-symbiont interactions. However, endosymbiont research has focused on a few aphid species, making it necessary to make greater efforts to other aphid species through different regions, in order to have a better understanding of the role of endosymbionts in aphids as a group. Aphid endosymbionts have frequently been studied by PCR-based techniques, using species-specific primers, nevertheless this approach may omit other non-target bacteria cohabiting a particular host species. Advances in high-throughput sequencing technologies are complementing our knowledge of microbial communities by allowing us the study of whole microbiome of different organisms. We used a 16S rRNA amplicon sequencing approach to study the microbiome of aphids in order to describe the bacterial community diversity in introduced populations of the cereal aphids, Sitobion avenae and Rhopalosiphum padi in Chile (South America). An absence of secondary endosymbionts and two common secondary endosymbionts of aphids were found in the aphids R. padi and S. avenae, respectively. Of those endosymbionts, Regiella insecticola was the dominant secondary endosymbiont among the aphid samples. In addition, the presence of a previously unidentified bacterial species closely related to a phytopathogenic Pseudomonad species was detected. We discuss these results in relation to the bacterial endosymbiont diversity found in other regions of the native and introduced range of S. avenae and R. padi. A similar endosymbiont diversity has been reported for both aphid species in their native range. However, variation in the secondary endosymbiont infection could be observed among the introduced and native populations of the aphid S. avenae, indicating that aphid-endosymbiont associations can vary across the geographic range of an aphid species. In addition, we discuss the potential role of aphids as vectors and/or alternative hosts of phytopathogenic bacteria.

9.
PeerJ ; 5: e3640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852588

RESUMO

The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity.

10.
PeerJ ; 5: e3559, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713658

RESUMO

BACKGROUND: Parasitoids are frequently used in biological control due to the fact that they are considered host specific and highly efficient at attacking their hosts. As they spend a significant part of their life cycle within their hosts, feeding habits and life history of their host can promote specialization via host-race formation (sequential radiation). The specialized host races from different hosts can vary morphologically, behaviorally and genetically. However, these variations are sometimes inconspicuous and require more powerful tools in order to detect variation such as geometric morphometrics analysis. METHODS: We examined Aphidius ervi, an important introduced biological control agent in Chile associated with a great number of aphid species, which are exploiting different plant hosts and habitats. Several combinations (biotypes) of parasitoids with various aphid/host plant combinations were analyzed in order to obtain measures of forewing shape and size. To show the differences among defined biotypes, we chose 13 specific landmarks on each individual parasitoid wing. The analysis of allometric variation calculated in wing shape and size over centroid size (CS), revealed the allometric changes among biotypes collected from different hosts. To show all differences in shape of forewings, we made seven biotype pairs using an outline-based geometric morphometrics comparison. RESULTS: The biotype A. pis_pea (Acyrthosiphon pisum on pea) was the extreme wing size in this study compared to the other analyzed biotypes. Aphid hosts have a significant influence in the morphological differentiation of the parasitoid forewing, splitting biotypes in two groups. The first group consisted of biotypes connected with Acyrthosiphon pisum on legumes, while the second group is composed of biotypes connected with aphids attacking cereals, with the exception of the R. pad_wheat (Rhopalosiphum padi on wheat) biotype. There was no significant effect of plant species on parasitoid wing size and shape. DISCUSSION: Although previous studies have suggested that the genotype of parasitoids is of greater significance for the morphological variations of size and shape of wings, this study indicates that the aphid host on which A. ervi develops is the main factor to alter the structure of parasitoid forewings. Bigger aphid hosts implied longer and broader forewings of A. ervi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA