Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Diabetol Metab Syndr ; 15(1): 124, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296485

RESUMO

Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.

2.
Clinics (Sao Paulo) ; 77: 100028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35397367

RESUMO

OBJECTIVES: Because the plasma campesterol/cholesterol ratio does not differ between groups that absorb different amounts of cholesterol, the authors investigated whether the plasma Phytosterols (PS) relate to the body's cholesterol synthesis rate measured as non-cholesterol sterol precursors (lathosterol). METHOD: The authors studied 38 non-obese volunteers (58±12 years; Low-Density Lipoprotein Cholesterol ‒ LDL-C ≥ 130 mg/dL) randomly assigned to consume 400 mL/day of soy milk (Control phase) or soy milk + PS (1.6 g/day) for four weeks in a double-blind, cross-over study. PS and lathosterol were measured in plasma by gas chromatography coupled to mass spectrophotometry. RESULTS: PS treatment reduced plasma total cholesterol concentration (-5.5%, p < 0.001), LDL-C (-7.6%, p < 0.001), triglycerides (-13.6%, p < 0.0085), and apolipoprotein B (apo B) (-6.3%, p < 0.008), without changing high density lipoprotein cholesterol (HDL-C concentration), but plasma lathosterol, campesterol and sitosterol expressed per plasma cholesterol increased. CONCLUSIONS: The lathosterol-to-cholesterol plasma ratio predicted the plasma cholesterol response to PS feeding. The highest plasma lathosterol concentration during the control phase was associated with a lack of response of plasma cholesterol during the PS treatment period. Consequently, cholesterol synthesis in non-responders to dietary PS being elevated in the control phase indicates these cases resist to further synthesis rise, whereas responders to dietary PS, having in the control phase synthesis values lower than non-responders, expand synthesis on alimentary PS. Responders absorb more PS than non-responders, likely resulting from responders delivering into the intestinal lumen less endogenous cholesterol than non-responders do, thus facilitating greater intestinal absorption of PS shown as increased plasma PS concentration.


Assuntos
Colesterol , Fitosteróis , HDL-Colesterol , LDL-Colesterol , Estudos Cross-Over , Humanos
3.
Clinics ; 77: 100028, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375192

RESUMO

Abstract Objectives Because the plasma campesterol/cholesterol ratio does not differ between groups that absorb different amounts of cholesterol, the authors investigated whether the plasma Phytosterols (PS) relate to the body's cholesterol synthesis rate measured as non-cholesterol sterol precursors (lathosterol). Method The authors studied 38 non-obese volunteers (58±12 years; Low-Density Lipoprotein Cholesterol ‒ LDL-C ≥ 130 mg/dL) randomly assigned to consume 400 mL/day of soy milk (Control phase) or soy milk + PS (1.6 g/day) for four weeks in a double-blind, cross-over study. PS and lathosterol were measured in plasma by gas chromatography coupled to mass spectrophotometry. Results PS treatment reduced plasma total cholesterol concentration (-5.5%, p < 0.001), LDL-C (-7.6%, p < 0.001), triglycerides (-13.6%, p < 0.0085), and apolipoprotein B (apo B) (-6.3%, p < 0.008), without changing high density lipoprotein cholesterol (HDL-C concentration), but plasma lathosterol, campesterol and sitosterol expressed per plasma cholesterol increased. Conclusions The lathosterol-to-cholesterol plasma ratio predicted the plasma cholesterol response to PS feeding. The highest plasma lathosterol concentration during the control phase was associated with a lack of response of plasma cholesterol during the PS treatment period. Consequently, cholesterol synthesis in non-responders to dietary PS being elevated in the control phase indicates these cases resist to further synthesis rise, whereas responders to dietary PS, having in the control phase synthesis values lower than non-responders, expand synthesis on alimentary PS. Responders absorb more PS than non-responders, likely resulting from responders delivering into the intestinal lumen less endogenous cholesterol than non-responders do, thus facilitating greater intestinal absorption of PS shown as increased plasma PS concentration.

8.
Nutrients ; 11(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813339

RESUMO

Interesterified fats are being widely used by the food industry in an attempt to replace trans fatty acids. The effect of interesterified fats containing palmitic or stearic acids on lipid metabolism and inflammatory signaling pathways in adipose and hepatic tissues was evaluated. Male LDLr-KO mice were fed a high-fat diet containing polyunsaturated (PUFA), palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR), or stearic interesterified (STEAR INTER) fats for 16 weeks. The expression of genes and protein levels involved in lipid metabolism and inflammatory processes in liver and white adipose tissue was determined by quantitative RT-PCR and by Western blot, respectively. The infiltration of inflammatory cells in hepatic and adipose tissues was determined by eosin and hematoxylin, while liver collagen content was determined by Sirius Red staining. Both interesterified fats increased liver collagen content and JNK phosphorylation. Additionally, the STEAR INTER group developed nonalcoholic steatohepatitis (NASH) associated with higher neutrophil infiltration. PALM INTER induced adipose tissue expansion and enlargement of adipocytes. Furthermore, PALM INTER triggered increased IKK phosphorylation and TNFα protein content, conditions associated with the upstream activation of the NFkB signaling pathway. STEAR INTER induced NASH, while PALM INTER triggered hepatic fibrosis and adipocyte hypertrophy with inflammatory response in LDLr-KO mice.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Ácidos Graxos/efeitos adversos , Fígado/efeitos dos fármacos , Receptores de LDL/metabolismo , Tecido Adiposo/patologia , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/administração & dosagem , Ácidos Graxos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Receptores de LDL/genética
10.
J Nutr Biochem ; 25(2): 95-103, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445035

RESUMO

The impact of dietary fatty acids in atherosclerosis development may be partially attributed to their effect on macrophage cholesterol homeostasis. This process is the result of interplay between cholesterol uptake and efflux, which are permeated by inflammation and oxidative stress. Although saturated fatty acids (SAFAs) do not influence cholesterol efflux, they trigger endoplasmic reticulum stress, which culminates in increased lectin-like oxidized LDL (oxLDL) receptor (LOX1) expression and, consequently, oxLDL uptake, leading to apoptosis. Unsaturated fatty acids prevent most SAFAs-mediated deleterious effects and are generally associated with reduced cholesterol efflux, although α-linolenic acid increases cholesterol export. Trans fatty acids increase macrophage cholesterol content by reducing ABCA-1 expression, leading to strong atherosclerotic plaque formation. As isomers of conjugated linoleic acid (CLAs) are strong PPAR gamma ligands, they induce cluster of differentiation (CD36) expression, increasing intracellular cholesterol content. Considering the multiple effects of fatty acids on intracellular signaling pathways, the purpose of this review is to address the role of dietary fat in several mechanisms that control macrophage lipid content, which can determine the fate of atherosclerotic lesions.


Assuntos
Colesterol/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/farmacologia , Homeostase/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Humanos , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA