Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 11(5): e01142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787014

RESUMO

Cigarette smoking remains an important health concern and is still a leading cause of preventable mortality. Nicotine is the substance responsible for sustained tobacco use and dependence. Identification of biomarkers underlying nicotine dependence behavior is important to identify people at risk for this dependence. In the present study, we identified biochemical and genetic biomarkers of nicotine dependence detected by the Fagerström Test for Nicotine Dependence (FTDN) in Mexican smokers. The nicotine metabolites nicotine-N'-oxide, trans-3'-hydroxycotinine-glucuronide (3HC-O-Gluc), and nicotine-N-Gluc (Gluc) were useful to differentiate nicotine-dependent from non-dependent subjects (p < .0001) with an area under the curve (AUC) of 0.7818. Genetic variants in CYP2A6, FMO3, and UGT2B7 (rs2431413, rs28363545, and rs7439326, respectively) were associated with nicotine dependence (p = .03, p = .01, p = .01, respectively). Variations in the enzymatic activity of CYP2A6 were associated with altered nicotine-N'-oxide and 3HC-O-Gluc levels. Decreased urinary levels of 3HC-O-Gluc and increased nicotine-N'-oxide were associated with a decrease in the functional activity of CYP2A6. A strong positive correlation was observed between the ratio of urinary 3HC/cotinine, a measure of CYP2A6 activity, and the levels of 3HC-O-Gluc (p < .0001, r = .6835), while a strong negative correlation was observed with nicotine-N'-oxide (p < .0001, r = .6522) in nicotine-dependent subjects. No correlations were observed in non-nicotine-dependent subjects. These data suggest that particular urinary nicotine metabolites and genetic variants involved in nicotine metabolism are useful to identify subjects with nicotine dependence in the Mexican population.


Assuntos
Nicotina , Tabagismo , Humanos , Nicotina/metabolismo , Tabagismo/genética , Fumantes , Marcadores Genéticos , Óxidos
2.
Pharmacogenomics J ; 20(4): 586-594, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31959879

RESUMO

Nicotine is the major pharmacologically active substance in tobacco. Several studies have examined genotypes related to nicotine metabolism, but few studies have been performed in the Mexican population. The objective was to identify associations between gene variants in metabolizing enzymes and the urinary levels of nicotine metabolites among Mexican smokers. The levels of nicotine and its metabolites were determined in the urine of 88 young smokers from Mexico, and 167 variants in 24 genes associated with nicotine metabolism were genotyped by next-generation sequencing (NGS). Trans-3'-hydroxy-cotinine (3HC) and 4-hydroxy-4-(3-pyridyl)-butanoic acid were the most abundant metabolites (35 and 17%, respectively). CYP2A6*12 was associated with 3HC (p = 0.014). The rs145014075 was associated with creatinine-adjusted levels of nicotine (p = 0.035), while the rs12471326 (UGT1A9) was associated to cotinine-N-glucuronide (p = 0.030). CYP2A6 and UGT1A9 variants are associated to nicotine metabolism. 4HPBA metabolite was an abundant urinary metabolite in young Mexican smokers.


Assuntos
Citocromo P-450 CYP2A6/genética , Variação Genética/genética , Glucuronosiltransferase/genética , Nicotina/urina , Fumar/genética , Fumar/urina , Adolescente , Adulto , Feminino , Humanos , Masculino , México/epidemiologia , Polimorfismo Genético/genética , Fumantes , Fumar/epidemiologia , UDP-Glucuronosiltransferase 1A , Adulto Jovem
3.
J Pharmacol Exp Ther ; 372(1): 21-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628204

RESUMO

During tobacco and e-cigarette use, nicotine is mainly metabolized in the human liver by cytochrome P450 2A6 (CYP2A6). Given that a slower CYP2A6 metabolism has been associated with less vulnerability to develop nicotine dependence, the current studies sought to validate a novel CYP2A6 inhibitor, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), for its effects on intravenous nicotine self-administration. Male and female mice were trained to self-administer nicotine across daily sessions. Once stable responding was achieved, DLCI-1 or vehicle control was administered prior to nicotine sessions. We found that the lower 25 mg/kg and moderate 50 mg/kg doses of DLCI-1 induced a significant decrease in nicotine intake for both males and females. DLCI-1 was further shown to be more effective than a moderate 1 mg/kg dose of bupropion on reducing nicotine intake and did not exert the adverse behavioral effects found with a high 75 mg/kg dose of bupropion. Although mice treated with DLCI-1 self-administered significantly less nicotine, similar nicotine-mediated behavioral effects on locomotion were observed. Together, along with the analysis of nicotine metabolites during self-administration, these findings support the contention that blocking hepatic nicotine metabolism would allow for similar activation of nicotinic acetylcholine receptors at lower nicotine doses. Moreover, these effects of DLCI-1 were specific to nicotine self-administration, as DLCI-1 did not result in any behavioral changes during food self-administration. Taken together, these studies validate DLCI-1 as a novel compound to decrease nicotine consumption, which may thereby promote tobacco and nicotine product cessation. SIGNIFICANCE STATEMENT: Current pharmacological approaches for nicotine and tobacco cessation have only been able to achieve limited efficaciousness in promoting long-term abstinence. In this work, we characterize the effects of a novel compound, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), which inhibits the main enzyme that metabolizes nicotine, and we report a significant decrease in intravenous nicotine self-administration in male and female mice, supporting the potential of DLCI-1 as a novel tobacco cessation pharmacotherapeutic.


Assuntos
Citocromo P-450 CYP2A6/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Tiofenos/uso terapêutico , Tabagismo/tratamento farmacológico , Animais , Citocromo P-450 CYP2A6/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/metabolismo , Agentes de Cessação do Hábito de Fumar/administração & dosagem , Agentes de Cessação do Hábito de Fumar/efeitos adversos , Agentes de Cessação do Hábito de Fumar/farmacologia , Tiofenos/administração & dosagem , Tiofenos/efeitos adversos , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA